Home
Class 7
MATHS
Simplify (i)2/3+5/6-1/9 (ii)8-4 1/2-2 1...

Simplify
(i)`2/3+5/6-1/9`
(ii)`8-4 1/2-2 1/4`
(iii)`8 5/6- 3 3/8+ 1 7/12`

Text Solution

AI Generated Solution

The correct Answer is:
Let's simplify each part of the question step by step. ### Part (i): Simplify \( \frac{2}{3} + \frac{5}{6} - \frac{1}{9} \) **Step 1: Find the LCM of the denominators.** The denominators are 3, 6, and 9. The LCM of these numbers is 18. **Step 2: Convert each fraction to have the same denominator.** - For \( \frac{2}{3} \): \[ \frac{2}{3} = \frac{2 \times 6}{3 \times 6} = \frac{12}{18} \] - For \( \frac{5}{6} \): \[ \frac{5}{6} = \frac{5 \times 3}{6 \times 3} = \frac{15}{18} \] - For \( \frac{1}{9} \): \[ \frac{1}{9} = \frac{1 \times 2}{9 \times 2} = \frac{2}{18} \] **Step 3: Substitute back into the equation.** \[ \frac{12}{18} + \frac{15}{18} - \frac{2}{18} \] **Step 4: Combine the fractions.** \[ \frac{12 + 15 - 2}{18} = \frac{25}{18} \] **Step 5: Convert to a mixed number if necessary.** \[ \frac{25}{18} = 1 \frac{7}{18} \] ### Final Answer for Part (i): \[ 1 \frac{7}{18} \] --- ### Part (ii): Simplify \( 8 - 4 \frac{1}{2} - 2 \frac{1}{4} \) **Step 1: Convert mixed numbers to improper fractions.** - For \( 4 \frac{1}{2} \): \[ 4 \frac{1}{2} = \frac{9}{2} \] - For \( 2 \frac{1}{4} \): \[ 2 \frac{1}{4} = \frac{9}{4} \] **Step 2: Find a common denominator.** The denominators are 1, 2, and 4. The LCM is 4. **Step 3: Convert all terms to have the same denominator.** - For 8: \[ 8 = \frac{32}{4} \] - For \( 4 \frac{1}{2} \): \[ \frac{9}{2} = \frac{18}{4} \] - For \( 2 \frac{1}{4} \): \[ \frac{9}{4} \] **Step 4: Substitute back into the equation.** \[ \frac{32}{4} - \frac{18}{4} - \frac{9}{4} \] **Step 5: Combine the fractions.** \[ \frac{32 - 18 - 9}{4} = \frac{5}{4} \] **Step 6: Convert to a mixed number if necessary.** \[ \frac{5}{4} = 1 \frac{1}{4} \] ### Final Answer for Part (ii): \[ 1 \frac{1}{4} \] --- ### Part (iii): Simplify \( 8 \frac{5}{6} - 3 \frac{3}{8} + 1 \frac{7}{12} \) **Step 1: Convert mixed numbers to improper fractions.** - For \( 8 \frac{5}{6} \): \[ 8 \frac{5}{6} = \frac{53}{6} \] - For \( 3 \frac{3}{8} \): \[ 3 \frac{3}{8} = \frac{27}{8} \] - For \( 1 \frac{7}{12} \): \[ 1 \frac{7}{12} = \frac{19}{12} \] **Step 2: Find a common denominator.** The denominators are 6, 8, and 12. The LCM is 24. **Step 3: Convert all terms to have the same denominator.** - For \( \frac{53}{6} \): \[ \frac{53}{6} = \frac{53 \times 4}{6 \times 4} = \frac{212}{24} \] - For \( \frac{27}{8} \): \[ \frac{27}{8} = \frac{27 \times 3}{8 \times 3} = \frac{81}{24} \] - For \( \frac{19}{12} \): \[ \frac{19}{12} = \frac{19 \times 2}{12 \times 2} = \frac{38}{24} \] **Step 4: Substitute back into the equation.** \[ \frac{212}{24} - \frac{81}{24} + \frac{38}{24} \] **Step 5: Combine the fractions.** \[ \frac{212 - 81 + 38}{24} = \frac{169}{24} \] **Step 6: Convert to a mixed number if necessary.** \[ \frac{169}{24} = 7 \frac{1}{24} \] ### Final Answer for Part (iii): \[ 7 \frac{1}{24} \] ---
Promotional Banner

Topper's Solved these Questions

  • FRACTIONS

    RS AGGARWAL|Exercise EXERCISE 2B|15 Videos
  • FRACTIONS

    RS AGGARWAL|Exercise EXERCISE 2C|17 Videos
  • FRACTIONS

    RS AGGARWAL|Exercise Example(DIVISION OF FRACTIONS)|9 Videos
  • EXPONENTS

    RS AGGARWAL|Exercise TEST PAPER-5|14 Videos
  • INTEGERS

    RS AGGARWAL|Exercise TEST PAPER-1(D)|1 Videos

Similar Questions

Explore conceptually related problems

Simplify: 2/3+1/6-2/9 (ii) 12-3 1/2 (iii) 7 5/6-4 3/8+2 7/(12)

Simplify 9 5/6 -4 3/8+2 7/12

Simplify: 4 5/6-2 3/8+3 7/(12)

Simplify : (2(3)/(4))/(1(5)/(6)) +7/8 xx(1/3 + 1/4) + 5/7 + 3/4 of 3/7

Simplify : (i) 2^(2/3). 2^(1/5) (ii) (1/(3^3))^7 (iii) (11^(1/2))/(11^(1/4)) (iv) 7^(1/2). 8^(1/2)

Simplify (i) (6^(1//4))/(6^(1//5)) (ii) (8^(1//2))/(8^(2//3)) (iii) (5^(6//7))/(5^(2//3))

Simplify (i) 3^((1)/(4)) xx 5^((1)/(4)) (ii) 2^((5)/(8)) xx 3^((5)/(8)) (iii) 6^((1)/(2)) xx 7^((1)/(2))

Multiply: (i) 7 5/9"by"3/2 (ii) 9 3/8"by"12 (iii) 6 11/14"by"3 1/2

Simplify : (i) 2^(2//3).2^(1//5) (ii) ((1)/(3^(3)))^(7) (iii) (11^((1)/(2)))/(11^((1)/(4))) (iv) 7^(1//2).8^(1//2)