Home
Class 7
MATHS
Simplify9 5/6 -4 3/8+2 7/12...

Simplify`9 5/6 -4 3/8+2 7/12`

Text Solution

AI Generated Solution

The correct Answer is:
To simplify the expression \(9 \frac{5}{6} - 4 \frac{3}{8} + 2 \frac{7}{12}\), we will follow these steps: ### Step 1: Convert Mixed Numbers to Improper Fractions First, we convert each mixed number into an improper fraction. 1. For \(9 \frac{5}{6}\): \[ 9 \frac{5}{6} = \frac{(9 \times 6) + 5}{6} = \frac{54 + 5}{6} = \frac{59}{6} \] 2. For \(4 \frac{3}{8}\): \[ 4 \frac{3}{8} = \frac{(4 \times 8) + 3}{8} = \frac{32 + 3}{8} = \frac{35}{8} \] 3. For \(2 \frac{7}{12}\): \[ 2 \frac{7}{12} = \frac{(2 \times 12) + 7}{12} = \frac{24 + 7}{12} = \frac{31}{12} \] Now we have: \[ \frac{59}{6} - \frac{35}{8} + \frac{31}{12} \] ### Step 2: Find the Least Common Multiple (LCM) Next, we need to find the LCM of the denominators \(6\), \(8\), and \(12\). - The prime factorization of \(6\) is \(2 \times 3\). - The prime factorization of \(8\) is \(2^3\). - The prime factorization of \(12\) is \(2^2 \times 3\). The LCM is found by taking the highest power of each prime: - For \(2\), the highest power is \(2^3\). - For \(3\), the highest power is \(3^1\). Thus, the LCM is: \[ 2^3 \times 3^1 = 8 \times 3 = 24 \] ### Step 3: Convert Each Fraction to Have the Same Denominator Now we convert each fraction to have a denominator of \(24\). 1. Convert \(\frac{59}{6}\): \[ \frac{59}{6} = \frac{59 \times 4}{6 \times 4} = \frac{236}{24} \] 2. Convert \(\frac{35}{8}\): \[ \frac{35}{8} = \frac{35 \times 3}{8 \times 3} = \frac{105}{24} \] 3. Convert \(\frac{31}{12}\): \[ \frac{31}{12} = \frac{31 \times 2}{12 \times 2} = \frac{62}{24} \] Now we have: \[ \frac{236}{24} - \frac{105}{24} + \frac{62}{24} \] ### Step 4: Combine the Fractions Now we can combine the fractions: \[ \frac{236 - 105 + 62}{24} = \frac{236 - 105}{24} + \frac{62}{24} = \frac{131 + 62}{24} = \frac{193}{24} \] ### Step 5: Convert to Mixed Number Finally, we convert \(\frac{193}{24}\) to a mixed number: \[ 193 \div 24 = 8 \quad \text{(whole number part)} \] The remainder is: \[ 193 - (24 \times 8) = 193 - 192 = 1 \] Thus, we have: \[ \frac{193}{24} = 8 \frac{1}{24} \] ### Final Answer The simplified form of \(9 \frac{5}{6} - 4 \frac{3}{8} + 2 \frac{7}{12}\) is: \[ \boxed{8 \frac{1}{24}} \]
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • FRACTIONS

    RS AGGARWAL|Exercise EXERCISE 2D|17 Videos
  • EXPONENTS

    RS AGGARWAL|Exercise TEST PAPER-5|14 Videos
  • INTEGERS

    RS AGGARWAL|Exercise TEST PAPER-1(D)|1 Videos

Similar Questions

Explore conceptually related problems

Simplify: 4 5/6-2 3/8+3 7/(12)

Simplify: 2/3+1/6-2/9 (ii) 12-3 1/2 (iii) 7 5/6-4 3/8+2 7/(12)

Knowledge Check

  • Simplify 117 + 9 xx 5 - 3 xx 8 + 55 xx 55 + 8 xx 7 + 6

    A
    2825
    B
    2532
    C
    2528
    D
    3225
  • Simplify : ((5)/(6) + (7)/(8)"of" (4)/(5) div (3)/(4) "of" (9)/(10))/(8 (1)/(3) - ((4)/(1 - (7)/(8))"of 2" (1)/(4)) div (7)/(9) "of 12") "of 6" (1)/(2) + 5(1)/(9)

    A
    `24 (1)/(4)`
    B
    `24 (3)/(4)`
    C
    `22 (1)/(2)`
    D
    `23 (1)/(3)`
  • Simplify : (8 (3)/(5) + 7 (3)/(4) + 5 (2)/(3) - 4 (1)/(2))/(13 - 11 (9)/(10) + 10 (7)/(9) - 9 (17)/(20))"of" (2)/(11) "of 365"

    A
    `573 (3)/(11)`
    B
    `571 (7)/(11)`
    C
    `572 (3)/(11)`
    D
    `575 (4)/(11)`
  • Similar Questions

    Explore conceptually related problems

    Simplify 5/9-7/12+1/2

    Simplify (i) 2/3+5/6-1/9 (ii) 8-4 1/2-2 1/4 (iii) 8 5/6- 3 3/8+ 1 7/12

    Simplify : [ ((- 3 )/( 2) xx (4)/(5) ) + ((9)/(5) xx (-10)/( 3)) - ((1)/(2)xx (3)/(4)) ] div [ ((21)/( 9) xx (3)/(7)) +((7)/(8) xx (16)/(14)) ]

    Simplify: 4""1/6+3""5/12

    Simplify: 4((5)/(6))-2((3)/(8))+3((7)/(12))