Home
Class 7
MATHS
Which of the rational number is greater ...

Which of the rational number is greater in each of the following pairs?
(i) `frac(5)(9)("or")frac(-3)(-8)`
(ii) `frac(4)(-3)("or")frac(-8)(7)`
(iii) `frac(-12)(5)("or")-3`
(iv) `frac(7)(-9)("or")frac(-5)(8)`
(v) `frac(4)(-5)("or")frac(-7)(8)`
(vi) `frac(9)(-13)("or")frac(7)(-12)`

Text Solution

AI Generated Solution

The correct Answer is:
To determine which rational number is greater in each of the given pairs, we will convert the fractions to a common denominator and compare their values. Let's solve each part step by step. ### (i) Compare \( \frac{5}{9} \) and \( \frac{-3}{-8} \) 1. **Convert \( \frac{-3}{-8} \) to \( \frac{3}{8} \)** (since a negative divided by a negative is positive). 2. **Find a common denominator**: The LCM of 9 and 8 is 72. 3. **Convert \( \frac{5}{9} \)**: \[ \frac{5}{9} = \frac{5 \times 8}{9 \times 8} = \frac{40}{72} \] 4. **Convert \( \frac{3}{8} \)**: \[ \frac{3}{8} = \frac{3 \times 9}{8 \times 9} = \frac{27}{72} \] 5. **Compare**: \( \frac{40}{72} \) is greater than \( \frac{27}{72} \). **Answer**: \( \frac{5}{9} \) is greater. ### (ii) Compare \( \frac{4}{-3} \) and \( \frac{-8}{7} \) 1. **Convert \( \frac{4}{-3} \) to \( -\frac{4}{3} \)**. 2. **Find a common denominator**: The LCM of 3 and 7 is 21. 3. **Convert \( -\frac{4}{3} \)**: \[ -\frac{4}{3} = -\frac{4 \times 7}{3 \times 7} = -\frac{28}{21} \] 4. **Convert \( \frac{-8}{7} \)**: \[ \frac{-8}{7} = \frac{-8 \times 3}{7 \times 3} = -\frac{24}{21} \] 5. **Compare**: \( -\frac{28}{21} \) is less than \( -\frac{24}{21} \). **Answer**: \( \frac{-8}{7} \) is greater. ### (iii) Compare \( \frac{-12}{5} \) and \( -3 \) 1. **Convert \( -3 \) to a fraction**: \( -3 = \frac{-15}{5} \). 2. **Compare**: \( \frac{-12}{5} \) and \( \frac{-15}{5} \). 3. **Since \(-12\) is greater than \(-15\)**, we have \( \frac{-12}{5} > -3 \). **Answer**: \( -3 \) is greater. ### (iv) Compare \( \frac{7}{-9} \) and \( \frac{-5}{8} \) 1. **Convert \( \frac{7}{-9} \) to \( -\frac{7}{9} \)**. 2. **Find a common denominator**: The LCM of 9 and 8 is 72. 3. **Convert \( -\frac{7}{9} \)**: \[ -\frac{7}{9} = -\frac{7 \times 8}{9 \times 8} = -\frac{56}{72} \] 4. **Convert \( \frac{-5}{8} \)**: \[ \frac{-5}{8} = \frac{-5 \times 9}{8 \times 9} = -\frac{45}{72} \] 5. **Compare**: \( -\frac{56}{72} < -\frac{45}{72} \). **Answer**: \( \frac{-5}{8} \) is greater. ### (v) Compare \( \frac{4}{-5} \) and \( \frac{-7}{8} \) 1. **Convert \( \frac{4}{-5} \) to \( -\frac{4}{5} \)**. 2. **Find a common denominator**: The LCM of 5 and 8 is 40. 3. **Convert \( -\frac{4}{5} \)**: \[ -\frac{4}{5} = -\frac{4 \times 8}{5 \times 8} = -\frac{32}{40} \] 4. **Convert \( \frac{-7}{8} \)**: \[ \frac{-7}{8} = \frac{-7 \times 5}{8 \times 5} = -\frac{35}{40} \] 5. **Compare**: \( -\frac{32}{40} < -\frac{35}{40} \). **Answer**: \( \frac{-7}{8} \) is greater. ### (vi) Compare \( \frac{9}{-13} \) and \( \frac{7}{-12} \) 1. **Convert \( \frac{9}{-13} \) to \( -\frac{9}{13} \)**. 2. **Find a common denominator**: The LCM of 13 and 12 is 156. 3. **Convert \( -\frac{9}{13} \)**: \[ -\frac{9}{13} = -\frac{9 \times 12}{13 \times 12} = -\frac{108}{156} \] 4. **Convert \( \frac{7}{-12} \)**: \[ \frac{7}{-12} = -\frac{7 \times 13}{12 \times 13} = -\frac{91}{156} \] 5. **Compare**: \( -\frac{108}{156} < -\frac{91}{156} \). **Answer**: \( \frac{7}{-12} \) is greater. ### Summary of Answers: - (i) \( \frac{5}{9} \) - (ii) \( \frac{-8}{7} \) - (iii) \( -3 \) - (iv) \( \frac{-5}{8} \) - (v) \( \frac{-7}{8} \) - (vi) \( \frac{7}{-12} \)
Promotional Banner

Topper's Solved these Questions

  • RATIONAL NUMBERS

    RS AGGARWAL|Exercise EXERCISE 4C|5 Videos
  • RATIONAL NUMBERS

    RS AGGARWAL|Exercise EXERCISE 4D|16 Videos
  • RATIONAL NUMBERS

    RS AGGARWAL|Exercise EXERCISE 4A|22 Videos
  • RATION AND PROPORTION

    RS AGGARWAL|Exercise Test papers|18 Videos
  • REFLECTION AND ROTATIONAL SYMMETRY

    RS AGGARWAL|Exercise Exercise B|12 Videos

Similar Questions

Explore conceptually related problems

Which of the two rational number is greater in each of the following pairs? (i) frac(5)(6)("or")0 (ii) frac(-3)(5)("or")0 (iii) frac(5)(8)("or")frac(3)(8) (iv) frac(7)(9)("or")frac(-5)(9) (v) frac(-6)(11)("or")frac(5)(-11) (vi) frac(-15)(4)("or")frac(-17)(4)

Find four rational number equivalent to each of the following. (i) frac(6)(11) (ii) frac(-3)(8) (iii) frac(7)(-15) (iv) 8 (v) 1 (vi) -1

Which of the following are pairs of equivalent rational numbers? (i) frac(-13)(7),frac(39)(-21) (ii) frac(3)(-8),frac(-6)(16) (iii) frac(9)(4),frac(-36)(-16) (iv) frac(7)(15),frac(-28)(60) (v) frac(3)(12),frac(-1)(4) (vi) frac(2)(3),frac(3)(2)

Which of the following rational number are equal? (i) frac(8)(-12)("and")frac(-10)(15) (ii) frac(-3)(9)("and")frac(7)(-21) (iii) frac(-8)(-14)("and")frac(15)(21)

Which of the following are rational numbers? (i) frac(5)(-8) (ii) frac(-6)(11) (iii) frac(7)(15) (iv) frac(-8)(-12) (v) 6 (vi) -3 (vii) 0 (viii) frac(0)(1) (ix) frac(1)(0) (x) frac(0)(0)

Simplify: (i) frac(-5)(9) xx frac(63)(-100) (ii) frac(-11)(9) xx frac(-21)(-44)

Find x such that: (i) frac(-1)(5)=frac(8)(x) (ii) frac(7)(-3)=frac(x)(6) (iii) frac(3)(5)=frac(x)(-25) (iv) frac(13)(6)=frac(-65)(x) (v) frac(16)(x)=-4 (vi) frac(-48)(x)=2

EXAMPLE 2. Subtract (i) frac(3)(4)("from")frac(2)(3) (ii) frac(-5)(7)("from")frac(-2)(5)

Write each of the following rational number in standard form: (i) frac(35)(49) (ii) frac(8)(-36) (iii) frac(-27)(45) (iv) frac(-14)(-49) (v) frac(91)(-78) (vi) frac(-68)(119) (vii) frac(-87)(116) (viii) frac(299)(-161)

Which of the following are positive rational numbers? (i) frac(3)(-5) (ii) frac(-11)(15) (iii) frac(-5)(-8) (iv) frac(37)(53) (v) frac(0)(3) (vi) 8