Home
Class 7
MATHS
Arrange the following rational number in...

Arrange the following rational number in descending order:
`frac(-2)(5),frac(7)(-10),frac(-11)(15),frac(19)(-30)`

A

`frac(-2)(5)gtfrac(-11)(15)gtfrac(7)(-10)gtfrac(19)(-30)`

B

`frac(-11)(15)gtfrac(19)(-30)gtfrac(7)(-10)gtfrac(-2)(5)`

C

`frac(-2)(5)gtfrac(19)(-30)gtfrac(7)(-10)gtfrac(-11)(15)`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To arrange the given rational numbers in descending order, we will follow these steps: ### Step 1: Identify the Rational Numbers The rational numbers we need to arrange are: 1. \(-\frac{2}{5}\) 2. \(\frac{7}{-10}\) (which is the same as \(-\frac{7}{10}\)) 3. \(-\frac{11}{15}\) 4. \(\frac{19}{-30}\) (which is the same as \(-\frac{19}{30}\)) ### Step 2: Find a Common Denominator To compare these fractions, we need to convert them to have a common denominator. The least common multiple (LCM) of the denominators \(5, 10, 15, 30\) is \(30\). ### Step 3: Convert Each Fraction Now we will convert each fraction to have the denominator \(30\): 1. \(-\frac{2}{5}\): \[ -\frac{2}{5} = -\frac{2 \times 6}{5 \times 6} = -\frac{12}{30} \] 2. \(-\frac{7}{10}\): \[ -\frac{7}{10} = -\frac{7 \times 3}{10 \times 3} = -\frac{21}{30} \] 3. \(-\frac{11}{15}\): \[ -\frac{11}{15} = -\frac{11 \times 2}{15 \times 2} = -\frac{22}{30} \] 4. \(-\frac{19}{30}\): \[ -\frac{19}{30} \text{ (already has the denominator 30)} \] ### Step 4: Compare the Numerators Now we have: 1. \(-\frac{12}{30}\) 2. \(-\frac{21}{30}\) 3. \(-\frac{22}{30}\) 4. \(-\frac{19}{30}\) To compare these fractions, we look at the numerators: - \(-12\) - \(-21\) - \(-22\) - \(-19\) ### Step 5: Arrange in Descending Order Since all the fractions have the same negative denominator, the fraction with the least negative numerator is the largest. Thus, we arrange them as follows: 1. \(-\frac{12}{30}\) (largest) 2. \(-\frac{19}{30}\) 3. \(-\frac{21}{30}\) 4. \(-\frac{22}{30}\) (smallest) ### Final Answer In descending order, the rational numbers are: \[ -\frac{2}{5}, -\frac{19}{30}, -\frac{7}{10}, -\frac{11}{15} \]
Promotional Banner

Topper's Solved these Questions

  • RATIONAL NUMBERS

    RS AGGARWAL|Exercise EXERCISE 4C|5 Videos
  • RATIONAL NUMBERS

    RS AGGARWAL|Exercise EXERCISE 4D|16 Videos
  • RATIONAL NUMBERS

    RS AGGARWAL|Exercise EXERCISE 4A|22 Videos
  • RATION AND PROPORTION

    RS AGGARWAL|Exercise Test papers|18 Videos
  • REFLECTION AND ROTATIONAL SYMMETRY

    RS AGGARWAL|Exercise Exercise B|12 Videos

Similar Questions

Explore conceptually related problems

frac(E)(H):frac(22)(19)::frac(B)(I):?

Write each of the following rational number in standard form: (i) frac(35)(49) (ii) frac(8)(-36) (iii) frac(-27)(45) (iv) frac(-14)(-49) (v) frac(91)(-78) (vi) frac(-68)(119) (vii) frac(-87)(116) (viii) frac(299)(-161)

Write down the numerator and the denominator of each the of the following rational numbers: (i) frac (8)(19) (ii) frac(5)(-8) (iii) frac(-13)(15) (iv) frac(-8)(-11) (v) 9

LCM of frac(2)(3) , frac(4)(9) , frac(7)(12) is

EXAMPLE 2. Express each of the following rational number in exponential from: ( i ) frac(81)(256) ( ii ) frac(-32)(243) ( iii ) frac(-1)(343)

Find the values of frac(1)(2) + frac(1)(6) + frac(1)(20)+frac(1)(30)

Find five rational numbers between frac(-3)(5)("and")frac(-1)(2).

Which of the following are rational numbers? (i) frac(5)(-8) (ii) frac(-6)(11) (iii) frac(7)(15) (iv) frac(-8)(-12) (v) 6 (vi) -3 (vii) 0 (viii) frac(0)(1) (ix) frac(1)(0) (x) frac(0)(0)

Write each of the following as a rational number with positive denominator. (i) frac(12)(-17) (ii) frac(1)(-2) (iii) frac(-8)(-19) (iv) frac(11)(-6)