Home
Class 7
MATHS
Add the following rational numbers : ...

Add the following rational numbers :
(i) `(-2)/(5)`and `(3)/(4)`
(ii) `(-5)/(9)` and `(2)/(3)`
(iii) `(-4)` and `(1)/(2)`
(iv) `(-7)/(27)`and `(5)/(18)`
(v) ` (-5)/(36)` and `(-7)/(12)`
(vi) `(1)/(-9)`and `(4)/(-27)`
(vii) `(-9)/(24)` and `(-1)/(18)`
(viii) `(27)/(-4)`and `(-15)/(8)`

Text Solution

AI Generated Solution

The correct Answer is:
Let's solve the given problems step by step: ### (i) Add `(-2)/(5)` and `(3)/(4)` 1. **Find the LCM of the denominators (5 and 4)**: - LCM(5, 4) = 20 2. **Convert each fraction to have the common denominator**: - For `(-2)/(5)`: \[ \frac{-2}{5} = \frac{-2 \times 4}{5 \times 4} = \frac{-8}{20} \] - For `(3)/(4)`: \[ \frac{3}{4} = \frac{3 \times 5}{4 \times 5} = \frac{15}{20} \] 3. **Add the two fractions**: \[ \frac{-8}{20} + \frac{15}{20} = \frac{-8 + 15}{20} = \frac{7}{20} \] ### (ii) Add `(-5)/(9)` and `(2)/(3)` 1. **Find the LCM of the denominators (9 and 3)**: - LCM(9, 3) = 9 2. **Convert each fraction to have the common denominator**: - For `(-5)/(9)`: \[ \frac{-5}{9} = \frac{-5}{9} \quad \text{(no change needed)} \] - For `(2)/(3)`: \[ \frac{2}{3} = \frac{2 \times 3}{3 \times 3} = \frac{6}{9} \] 3. **Add the two fractions**: \[ \frac{-5}{9} + \frac{6}{9} = \frac{-5 + 6}{9} = \frac{1}{9} \] ### (iii) Add `(-4)` and `(1)/(2)` 1. **Convert `(-4)` to a fraction**: \[ -4 = \frac{-4}{1} \] 2. **Find the LCM of the denominators (1 and 2)**: - LCM(1, 2) = 2 3. **Convert each fraction to have the common denominator**: - For `(-4)`: \[ \frac{-4}{1} = \frac{-4 \times 2}{1 \times 2} = \frac{-8}{2} \] - For `(1)/(2)`: \[ \frac{1}{2} = \frac{1}{2} \quad \text{(no change needed)} \] 4. **Add the two fractions**: \[ \frac{-8}{2} + \frac{1}{2} = \frac{-8 + 1}{2} = \frac{-7}{2} \] ### (iv) Add `(-7)/(27)` and `(5)/(18)` 1. **Find the LCM of the denominators (27 and 18)**: - LCM(27, 18) = 54 2. **Convert each fraction to have the common denominator**: - For `(-7)/(27)`: \[ \frac{-7}{27} = \frac{-7 \times 2}{27 \times 2} = \frac{-14}{54} \] - For `(5)/(18)`: \[ \frac{5}{18} = \frac{5 \times 3}{18 \times 3} = \frac{15}{54} \] 3. **Add the two fractions**: \[ \frac{-14}{54} + \frac{15}{54} = \frac{-14 + 15}{54} = \frac{1}{54} \] ### (v) Add `(-5)/(36)` and `(-7)/(12)` 1. **Find the LCM of the denominators (36 and 12)**: - LCM(36, 12) = 36 2. **Convert each fraction to have the common denominator**: - For `(-5)/(36)`: \[ \frac{-5}{36} = \frac{-5}{36} \quad \text{(no change needed)} \] - For `(-7)/(12)`: \[ \frac{-7}{12} = \frac{-7 \times 3}{12 \times 3} = \frac{-21}{36} \] 3. **Add the two fractions**: \[ \frac{-5}{36} + \frac{-21}{36} = \frac{-5 - 21}{36} = \frac{-26}{36} = \frac{-13}{18} \] ### (vi) Add `(1)/(-9)` and `(4)/(-27)` 1. **Find the LCM of the denominators (9 and 27)**: - LCM(9, 27) = 27 2. **Convert each fraction to have the common denominator**: - For `(1)/(-9)`: \[ \frac{1}{-9} = \frac{1 \times 3}{-9 \times 3} = \frac{3}{-27} \] - For `(4)/(-27)`: \[ \frac{4}{-27} = \frac{4}{-27} \quad \text{(no change needed)} \] 3. **Add the two fractions**: \[ \frac{3}{-27} + \frac{4}{-27} = \frac{3 + 4}{-27} = \frac{7}{-27} = \frac{-7}{27} \] ### (vii) Add `(-9)/(24)` and `(-1)/(18)` 1. **Find the LCM of the denominators (24 and 18)**: - LCM(24, 18) = 72 2. **Convert each fraction to have the common denominator**: - For `(-9)/(24)`: \[ \frac{-9}{24} = \frac{-9 \times 3}{24 \times 3} = \frac{-27}{72} \] - For `(-1)/(18)`: \[ \frac{-1}{18} = \frac{-1 \times 4}{18 \times 4} = \frac{-4}{72} \] 3. **Add the two fractions**: \[ \frac{-27}{72} + \frac{-4}{72} = \frac{-27 - 4}{72} = \frac{-31}{72} \] ### (viii) Add `(27)/(-4)` and `(-15)/(8)` 1. **Find the LCM of the denominators (4 and 8)**: - LCM(4, 8) = 8 2. **Convert each fraction to have the common denominator**: - For `(27)/(-4)`: \[ \frac{27}{-4} = \frac{27 \times 2}{-4 \times 2} = \frac{54}{-8} \] - For `(-15)/(8)`: \[ \frac{-15}{8} = \frac{-15}{8} \quad \text{(no change needed)} \] 3. **Add the two fractions**: \[ \frac{54}{-8} + \frac{-15}{8} = \frac{54 - 15}{-8} = \frac{39}{-8} = \frac{-39}{8} \] ### Summary of the Answers: 1. \( \frac{7}{20} \) 2. \( \frac{1}{9} \) 3. \( \frac{-7}{2} \) 4. \( \frac{1}{54} \) 5. \( \frac{-13}{18} \) 6. \( \frac{-7}{27} \) 7. \( \frac{-31}{72} \) 8. \( \frac{-39}{8} \)
Promotional Banner

Topper's Solved these Questions

  • RATIONAL NUMBERS

    RS AGGARWAL|Exercise EXERCISE 4D|16 Videos
  • RATIONAL NUMBERS

    RS AGGARWAL|Exercise EXERCISE 4E|6 Videos
  • RATIONAL NUMBERS

    RS AGGARWAL|Exercise EXERCISE 4B|10 Videos
  • RATION AND PROPORTION

    RS AGGARWAL|Exercise Test papers|18 Videos
  • REFLECTION AND ROTATIONAL SYMMETRY

    RS AGGARWAL|Exercise Exercise B|12 Videos

Similar Questions

Explore conceptually related problems

Add the following rational numbers : (i) (12)/(7) and (3)/(7) : (ii) (-2)/(5) and (1)/(5) (iii) (3)/(8) and (1)/(8) (iv) (-5)/(11) and (7)/(-11) (v) (9)/(-13) and (-11)/(-13) (vi) (-2)/(9) and (5)/(9) (vii) -(17)/(9) and (-11)/(9) (viii) (-3)/(7) and (5)/(-7)

Add the following rational numbers: {:((i) (-2)/(5) and (4)/(5),(ii) (-6)/(11) and (-4)/(11) , (iii) (-11)/(8) and (5)/(8)), ((iv) (-7)/(3) and (1)/(3),(v) (5)/(6) and (-1)/(6),(vi) (-17)/(15) and (-1)/(15)):}

Add the following rational numbers: (-7)/(27)\ a n d(11)/(18) (ii) (31)/(-4)\ a n d(-5)/8

Add the following rational numbers: (i) (3)/(4) and (-3)/(5) (ii) (5)/(8) and (-7)/(12) ,(iii) (-8)/(9) and (11)/(6) ,((iv) (-5)/(16) and (7)/(24) ,(v) (7)/(-18) and (8)/(27) ,(vi) (1)/(-12) and (2)/(-15) , (vii) -1 and (3)/(4) ,(viii) 2 and (-5)/(4) ,(ix) 0 and (-2)/(5)

Add the rational numbers: (-5)/(16) and (7)/(24) (ii) (7)/(-18) and (8)/(27)

Add the rational numbers: -3 and (3)/(5) (ii) (-7)/(27) and (11)/(18)

Add the rational numbers: (3)/(4) and (-5)/(8)quad (ii) (5)/(-9) and (7)/(3)

Find a rational number between (i) (3)/(8) and (2)/(5) (ii) 1.3 and 1.4 (iii) - 1 and (1)/(2) (iv) -(3)/(4) and -(2)/(5) (v) (1)/(9) and (2)/(9)

Write the following rational numbers in ascending order: (i) (-3)/(5),(-2)/(5),(-1)/(5) (ii) (-1)/(3),(-2)/(9),(-4)/(3)( iii) (-3)/(7),(-3)/(2),(-3)/(4)