Add the following rational numbers :
(i) `(-2)/(5)`and `(3)/(4)`
(ii) `(-5)/(9)` and `(2)/(3)`
(iii) `(-4)` and `(1)/(2)`
(iv) `(-7)/(27)`and `(5)/(18)`
(v) ` (-5)/(36)` and `(-7)/(12)`
(vi) `(1)/(-9)`and `(4)/(-27)`
(vii) `(-9)/(24)` and `(-1)/(18)`
(viii) `(27)/(-4)`and `(-15)/(8)`
Add the following rational numbers :
(i) `(-2)/(5)`and `(3)/(4)`
(ii) `(-5)/(9)` and `(2)/(3)`
(iii) `(-4)` and `(1)/(2)`
(iv) `(-7)/(27)`and `(5)/(18)`
(v) ` (-5)/(36)` and `(-7)/(12)`
(vi) `(1)/(-9)`and `(4)/(-27)`
(vii) `(-9)/(24)` and `(-1)/(18)`
(viii) `(27)/(-4)`and `(-15)/(8)`
(i) `(-2)/(5)`and `(3)/(4)`
(ii) `(-5)/(9)` and `(2)/(3)`
(iii) `(-4)` and `(1)/(2)`
(iv) `(-7)/(27)`and `(5)/(18)`
(v) ` (-5)/(36)` and `(-7)/(12)`
(vi) `(1)/(-9)`and `(4)/(-27)`
(vii) `(-9)/(24)` and `(-1)/(18)`
(viii) `(27)/(-4)`and `(-15)/(8)`
Text Solution
AI Generated Solution
The correct Answer is:
Let's solve the given problems step by step:
### (i) Add `(-2)/(5)` and `(3)/(4)`
1. **Find the LCM of the denominators (5 and 4)**:
- LCM(5, 4) = 20
2. **Convert each fraction to have the common denominator**:
- For `(-2)/(5)`:
\[
\frac{-2}{5} = \frac{-2 \times 4}{5 \times 4} = \frac{-8}{20}
\]
- For `(3)/(4)`:
\[
\frac{3}{4} = \frac{3 \times 5}{4 \times 5} = \frac{15}{20}
\]
3. **Add the two fractions**:
\[
\frac{-8}{20} + \frac{15}{20} = \frac{-8 + 15}{20} = \frac{7}{20}
\]
### (ii) Add `(-5)/(9)` and `(2)/(3)`
1. **Find the LCM of the denominators (9 and 3)**:
- LCM(9, 3) = 9
2. **Convert each fraction to have the common denominator**:
- For `(-5)/(9)`:
\[
\frac{-5}{9} = \frac{-5}{9} \quad \text{(no change needed)}
\]
- For `(2)/(3)`:
\[
\frac{2}{3} = \frac{2 \times 3}{3 \times 3} = \frac{6}{9}
\]
3. **Add the two fractions**:
\[
\frac{-5}{9} + \frac{6}{9} = \frac{-5 + 6}{9} = \frac{1}{9}
\]
### (iii) Add `(-4)` and `(1)/(2)`
1. **Convert `(-4)` to a fraction**:
\[
-4 = \frac{-4}{1}
\]
2. **Find the LCM of the denominators (1 and 2)**:
- LCM(1, 2) = 2
3. **Convert each fraction to have the common denominator**:
- For `(-4)`:
\[
\frac{-4}{1} = \frac{-4 \times 2}{1 \times 2} = \frac{-8}{2}
\]
- For `(1)/(2)`:
\[
\frac{1}{2} = \frac{1}{2} \quad \text{(no change needed)}
\]
4. **Add the two fractions**:
\[
\frac{-8}{2} + \frac{1}{2} = \frac{-8 + 1}{2} = \frac{-7}{2}
\]
### (iv) Add `(-7)/(27)` and `(5)/(18)`
1. **Find the LCM of the denominators (27 and 18)**:
- LCM(27, 18) = 54
2. **Convert each fraction to have the common denominator**:
- For `(-7)/(27)`:
\[
\frac{-7}{27} = \frac{-7 \times 2}{27 \times 2} = \frac{-14}{54}
\]
- For `(5)/(18)`:
\[
\frac{5}{18} = \frac{5 \times 3}{18 \times 3} = \frac{15}{54}
\]
3. **Add the two fractions**:
\[
\frac{-14}{54} + \frac{15}{54} = \frac{-14 + 15}{54} = \frac{1}{54}
\]
### (v) Add `(-5)/(36)` and `(-7)/(12)`
1. **Find the LCM of the denominators (36 and 12)**:
- LCM(36, 12) = 36
2. **Convert each fraction to have the common denominator**:
- For `(-5)/(36)`:
\[
\frac{-5}{36} = \frac{-5}{36} \quad \text{(no change needed)}
\]
- For `(-7)/(12)`:
\[
\frac{-7}{12} = \frac{-7 \times 3}{12 \times 3} = \frac{-21}{36}
\]
3. **Add the two fractions**:
\[
\frac{-5}{36} + \frac{-21}{36} = \frac{-5 - 21}{36} = \frac{-26}{36} = \frac{-13}{18}
\]
### (vi) Add `(1)/(-9)` and `(4)/(-27)`
1. **Find the LCM of the denominators (9 and 27)**:
- LCM(9, 27) = 27
2. **Convert each fraction to have the common denominator**:
- For `(1)/(-9)`:
\[
\frac{1}{-9} = \frac{1 \times 3}{-9 \times 3} = \frac{3}{-27}
\]
- For `(4)/(-27)`:
\[
\frac{4}{-27} = \frac{4}{-27} \quad \text{(no change needed)}
\]
3. **Add the two fractions**:
\[
\frac{3}{-27} + \frac{4}{-27} = \frac{3 + 4}{-27} = \frac{7}{-27} = \frac{-7}{27}
\]
### (vii) Add `(-9)/(24)` and `(-1)/(18)`
1. **Find the LCM of the denominators (24 and 18)**:
- LCM(24, 18) = 72
2. **Convert each fraction to have the common denominator**:
- For `(-9)/(24)`:
\[
\frac{-9}{24} = \frac{-9 \times 3}{24 \times 3} = \frac{-27}{72}
\]
- For `(-1)/(18)`:
\[
\frac{-1}{18} = \frac{-1 \times 4}{18 \times 4} = \frac{-4}{72}
\]
3. **Add the two fractions**:
\[
\frac{-27}{72} + \frac{-4}{72} = \frac{-27 - 4}{72} = \frac{-31}{72}
\]
### (viii) Add `(27)/(-4)` and `(-15)/(8)`
1. **Find the LCM of the denominators (4 and 8)**:
- LCM(4, 8) = 8
2. **Convert each fraction to have the common denominator**:
- For `(27)/(-4)`:
\[
\frac{27}{-4} = \frac{27 \times 2}{-4 \times 2} = \frac{54}{-8}
\]
- For `(-15)/(8)`:
\[
\frac{-15}{8} = \frac{-15}{8} \quad \text{(no change needed)}
\]
3. **Add the two fractions**:
\[
\frac{54}{-8} + \frac{-15}{8} = \frac{54 - 15}{-8} = \frac{39}{-8} = \frac{-39}{8}
\]
### Summary of the Answers:
1. \( \frac{7}{20} \)
2. \( \frac{1}{9} \)
3. \( \frac{-7}{2} \)
4. \( \frac{1}{54} \)
5. \( \frac{-13}{18} \)
6. \( \frac{-7}{27} \)
7. \( \frac{-31}{72} \)
8. \( \frac{-39}{8} \)
Topper's Solved these Questions
RATIONAL NUMBERS
RS AGGARWAL|Exercise EXERCISE 4D|16 VideosRATIONAL NUMBERS
RS AGGARWAL|Exercise EXERCISE 4E|6 VideosRATIONAL NUMBERS
RS AGGARWAL|Exercise EXERCISE 4B|10 VideosRATION AND PROPORTION
RS AGGARWAL|Exercise Test papers|18 VideosREFLECTION AND ROTATIONAL SYMMETRY
RS AGGARWAL|Exercise Exercise B|12 Videos
Similar Questions
Explore conceptually related problems
Add the following rational numbers : (i) (12)/(7) and (3)/(7) : (ii) (-2)/(5) and (1)/(5) (iii) (3)/(8) and (1)/(8) (iv) (-5)/(11) and (7)/(-11) (v) (9)/(-13) and (-11)/(-13) (vi) (-2)/(9) and (5)/(9) (vii) -(17)/(9) and (-11)/(9) (viii) (-3)/(7) and (5)/(-7)
Add the following rational numbers: {:((i) (-2)/(5) and (4)/(5),(ii) (-6)/(11) and (-4)/(11) , (iii) (-11)/(8) and (5)/(8)), ((iv) (-7)/(3) and (1)/(3),(v) (5)/(6) and (-1)/(6),(vi) (-17)/(15) and (-1)/(15)):}
Add the following rational numbers: (-7)/(27)\ a n d(11)/(18) (ii) (31)/(-4)\ a n d(-5)/8
Add the following rational numbers: (i) (3)/(4) and (-3)/(5) (ii) (5)/(8) and (-7)/(12) ,(iii) (-8)/(9) and (11)/(6) ,((iv) (-5)/(16) and (7)/(24) ,(v) (7)/(-18) and (8)/(27) ,(vi) (1)/(-12) and (2)/(-15) , (vii) -1 and (3)/(4) ,(viii) 2 and (-5)/(4) ,(ix) 0 and (-2)/(5)
Add the rational numbers: (-5)/(16) and (7)/(24) (ii) (7)/(-18) and (8)/(27)
Add the rational numbers: -3 and (3)/(5) (ii) (-7)/(27) and (11)/(18)
Add the rational numbers: (3)/(4) and (-5)/(8)quad (ii) (5)/(-9) and (7)/(3)
Find a rational number between (i) (3)/(8) and (2)/(5) (ii) 1.3 and 1.4 (iii) - 1 and (1)/(2) (iv) -(3)/(4) and -(2)/(5) (v) (1)/(9) and (2)/(9)
Write the following rational numbers in ascending order: (i) (-3)/(5),(-2)/(5),(-1)/(5) (ii) (-1)/(3),(-2)/(9),(-4)/(3)( iii) (-3)/(7),(-3)/(2),(-3)/(4)
RS AGGARWAL-RATIONAL NUMBERS-EXERCISE 4C
- Add the following rational numbers : (i)(12)/(7) and (3)/(7) : (ii) ...
Text Solution
|
- Add the following rational numbers : (i) (-2)/(5)and (3)/(4) (ii)...
Text Solution
|
- Evaluate : (i) (-3)/(5)+ (7)/(5)+(-1)/(5) (ii) (-12)/(7)+(3)/(7)+(-...
Text Solution
|
- Evaluate (i) (-8)/(15)+(2)/(-3) (ii) (-7)/(10)+(13)/(-15)+(27)/(20)...
Text Solution
|
- Express each of the following rational numbers as the sum of an intege...
Text Solution
|