Home
Class 7
MATHS
Find the value of x -2(1)/(3)+4(3)/(5)=...

Find the value of `x`
`-2(1)/(3)+4(3)/(5)`= `x`

A

`1(1)/(21)`

B

`(5)/(21)`

C

`(-5)/(21)`

D

none

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \(-2\frac{1}{3} + 4\frac{3}{5} = x\), we will follow these steps: ### Step 1: Convert Mixed Numbers to Improper Fractions 1. Convert \(-2\frac{1}{3}\) to an improper fraction: \[ -2\frac{1}{3} = -\left(2 \times 3 + 1\right)/3 = -\frac{6 + 1}{3} = -\frac{7}{3} \] 2. Convert \(4\frac{3}{5}\) to an improper fraction: \[ 4\frac{3}{5} = \left(4 \times 5 + 3\right)/5 = \frac{20 + 3}{5} = \frac{23}{5} \] ### Step 2: Add the Improper Fractions Now we need to add \(-\frac{7}{3}\) and \(\frac{23}{5}\). To do this, we need a common denominator. 1. The least common multiple (LCM) of 3 and 5 is 15. 2. Convert \(-\frac{7}{3}\) to a fraction with a denominator of 15: \[ -\frac{7}{3} = -\frac{7 \times 5}{3 \times 5} = -\frac{35}{15} \] 3. Convert \(\frac{23}{5}\) to a fraction with a denominator of 15: \[ \frac{23}{5} = \frac{23 \times 3}{5 \times 3} = \frac{69}{15} \] ### Step 3: Combine the Fractions Now we can add the two fractions: \[ -\frac{35}{15} + \frac{69}{15} = \frac{-35 + 69}{15} = \frac{34}{15} \] ### Step 4: Write the Final Answer Thus, the value of \(x\) is: \[ x = \frac{34}{15} \] ---
Promotional Banner

Topper's Solved these Questions

  • RATIONAL NUMBERS

    RS AGGARWAL|Exercise TEST PAPER -(4)|17 Videos
  • RATIONAL NUMBERS

    RS AGGARWAL|Exercise EXERCISE4F|13 Videos
  • RATION AND PROPORTION

    RS AGGARWAL|Exercise Test papers|18 Videos
  • REFLECTION AND ROTATIONAL SYMMETRY

    RS AGGARWAL|Exercise Exercise B|12 Videos

Similar Questions

Explore conceptually related problems

find the value of x 3+x/4=5

Find the value of x: 5x+2x+1 = 3x+4

Find the value of x 2x+1=5 3x+4=7+2x

Find the value of x . (4)/(3) divide x =(-5)/(2)

Find the value of x if 2x+8/3=1/4x+5

Q find the value of x:- 3/(x-2) - 2/(x-3)=4/(x-3)-3/(x-1)

Given w = - 2, x = 3, y = 0 & z = - (1)/(2) . Find the value of (z)/(w) + x . A. 3 (1)/(4) B. - 3 (1)/(4) C. 3.2 D. 3.5

If x=-3 find the value of 4x^2-5x+3

If(x+2)+(1)/(x+2)=5 then find the value of (x+2)^(3)+(1)/((x+2)^(3))

Find the value of x : 2(x-1) - 3( x -3 ) = 5 ( x -5 ) - 4 ( x - 8 )