Home
Class 7
MATHS
Fill in the blanks . (i)(……..)+((-7)/(...

Fill in the blanks .
(i)`(……..)+((-7)/(5))=(-2)/(3)`
(ii)` ((-65)/(14))divide(…….)=2(1)/(2)`
(iii)`(-3)/(8)+(……)=(5)/(12)`
(iv) Multiplicate inverse of `-1(3)/(4)`is ……….

Text Solution

AI Generated Solution

The correct Answer is:
Let's solve each part step by step: ### (i) \((\ldots) + \left(-\frac{7}{5}\right) = -\frac{2}{3}\) 1. Let \( x = \ldots \). 2. We can rewrite the equation as: \[ x = -\frac{2}{3} + \frac{7}{5} \] 3. To add these fractions, we need a common denominator. The least common multiple (LCM) of 3 and 5 is 15. 4. Convert each fraction: \[ -\frac{2}{3} = -\frac{10}{15} \quad \text{and} \quad \frac{7}{5} = \frac{21}{15} \] 5. Now, add the fractions: \[ x = -\frac{10}{15} + \frac{21}{15} = \frac{11}{15} \] 6. Therefore, the answer is: \[ \frac{11}{15} \] ### (ii) \(\left(-\frac{65}{14}\right) \div (\ldots) = 2\frac{1}{2}\) 1. Let \( x = \ldots \). 2. Convert \( 2\frac{1}{2} \) to an improper fraction: \[ 2\frac{1}{2} = \frac{5}{2} \] 3. Rewrite the equation: \[ -\frac{65}{14} \div x = \frac{5}{2} \] 4. This can be rewritten as: \[ -\frac{65}{14} = x \cdot \frac{5}{2} \] 5. To find \( x \), multiply both sides by the reciprocal of \(\frac{5}{2}\): \[ x = -\frac{65}{14} \cdot \frac{2}{5} \] 6. Simplifying gives: \[ x = -\frac{130}{70} = -\frac{13}{7} \] 7. Therefore, the answer is: \[ -\frac{13}{7} \] ### (iii) \(-\frac{3}{8} + (\ldots) = \frac{5}{12}\) 1. Let \( x = \ldots \). 2. Rewrite the equation: \[ x = \frac{5}{12} + \frac{3}{8} \] 3. Find a common denominator for 12 and 8, which is 24. 4. Convert each fraction: \[ \frac{5}{12} = \frac{10}{24} \quad \text{and} \quad \frac{3}{8} = \frac{9}{24} \] 5. Now add the fractions: \[ x = \frac{10}{24} + \frac{9}{24} = \frac{19}{24} \] 6. Therefore, the answer is: \[ \frac{19}{24} \] ### (iv) The multiplicative inverse of \(-1\frac{3}{4}\) 1. Convert \(-1\frac{3}{4}\) to an improper fraction: \[ -1\frac{3}{4} = -\frac{7}{4} \] 2. The multiplicative inverse of a number \( a \) is \(\frac{1}{a}\): \[ \text{Multiplicative inverse} = -\frac{4}{7} \] 3. Therefore, the answer is: \[ -\frac{4}{7} \] ### Summary of Answers: (i) \(\frac{11}{15}\) (ii) \(-\frac{13}{7}\) (iii) \(\frac{19}{24}\) (iv) \(-\frac{4}{7}\)
Promotional Banner

Topper's Solved these Questions

  • RATIONAL NUMBERS

    RS AGGARWAL|Exercise EXERCISE 4G OBJECTIVE TYPE QUESTIONS|19 Videos
  • RATION AND PROPORTION

    RS AGGARWAL|Exercise Test papers|18 Videos
  • REFLECTION AND ROTATIONAL SYMMETRY

    RS AGGARWAL|Exercise Exercise B|12 Videos

Similar Questions

Explore conceptually related problems

Fill in the blanks : (i) (….)divide ((-7)/(5))=(10)/(19) (ii) (……)divide(-3)= (-4)/(15) (iii) (9)/(8)divide (……..) = (-3)/(2) (iv) (-12)+(………) = (-6)/(5)

Fill in the blanks substituting proper numbers: (i) (5)/(12)=(……….)/(6) (ii) (1)/(8)=(4)/(…….) (iii) (a)/(5)=(b)/(3)=(3a+5b)/(.........)

" (iii) ((-2)/(5)+(4)/(7))+((-2)/(5)) ( iv )(3)/(4)+(7)/(6)+((-5)/(4))+(1)/(2)

Fill in the blanks: (i) (9)/(8) divide (........)=(-3)/(2) (ii) (.......)divide ((-7)/(5))=(10)/(19) (iii) (.......) divide (-3)=(-4)/(15) (iv) (-12) divide (.........) = (-6)/(5)

Simplify (i) 3^((1)/(4)) xx 5^((1)/(4)) (ii) 2^((5)/(8)) xx 3^((5)/(8)) (iii) 6^((1)/(2)) xx 7^((1)/(2))

Divide :1by(1)/(2) (ii) 5by(-5)/(7) (iii) (-3)/(4)by(9)/(-16)

Find the cube of : 2(2)/(5) (ii) 3(1)/(4) (iii) 0.3 (iv) 1.5

Find the multiplicative inverse of (i) -(1)/(8)" " (ii) 3(1)/(3)

Convert the following fractions into percentages: (i) (1)/(2) (ii) (3)/(4) (iii) (4)/(5) (iv) (7)/(8)

Find :(i)(7)/(3)-:2(ii)(4)/(9)-:5(iii)(6)/(13)-:7(iv) (4) (1)/(3)-:3(v)(3)(1)/(2)-:4(vi)(4)(3)/(7)-:7