Home
Class 7
MATHS
(5^(-1) xx 3^(-1))^(-1)= ?...

`(5^(-1) xx 3^(-1))^(-1)=` ?

A

`frac(1)(15)`

B

`frac(-1)(15)`

C

`15`

D

` -15 `

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \((5^{-1} \times 3^{-1})^{-1}\), we will follow these steps: ### Step 1: Rewrite the expression The original expression is: \[ (5^{-1} \times 3^{-1})^{-1} \] ### Step 2: Apply the property of negative exponents According to the property of negative exponents, \(a^{-n} = \frac{1}{a^n}\). Therefore, we can rewrite the expression as: \[ \frac{1}{(5^{-1} \times 3^{-1})} \] ### Step 3: Simplify the expression inside the parentheses Now, we can simplify \(5^{-1}\) and \(3^{-1}\): \[ 5^{-1} = \frac{1}{5} \quad \text{and} \quad 3^{-1} = \frac{1}{3} \] Thus, we have: \[ (5^{-1} \times 3^{-1}) = \left(\frac{1}{5} \times \frac{1}{3}\right) = \frac{1}{15} \] ### Step 4: Substitute back into the expression Now substitute \(\frac{1}{15}\) back into the expression: \[ \frac{1}{(5^{-1} \times 3^{-1})} = \frac{1}{\frac{1}{15}} = 15 \] ### Final Answer Thus, the final answer is: \[ 15 \]
Promotional Banner

Topper's Solved these Questions

  • EXPONENTS

    RS AGGARWAL|Exercise TEST PAPER-5|14 Videos
  • EXPONENTS

    RS AGGARWAL|Exercise EXERCISE 5B|4 Videos
  • DECIMALS

    RS AGGARWAL|Exercise TEST PAPER-3(D)|5 Videos
  • FRACTIONS

    RS AGGARWAL|Exercise TEST PAPER-2|26 Videos

Similar Questions

Explore conceptually related problems

[(2/5)^(-1)xx(3/4)^(-1)]^(-1)

sqrt(3xx5^(-3))-:(3^(-1))^((1)/(3))sqrt(5)*(3xx5^(6))^((1)/(6))=(3)/(5)

Simplified value of (25)^(1//3) xx 5^(1//3) is

Simplify (1-1/2)xx(1-1/3)xx(1-1/4)xx(1-1/5)=......... A) 1/2 B) 1/5 C) 4/5 D) 5

1 (4)/(5) xx 2 (2)/(3) xx 3 (1)/(3) xx (1)/(4) =

Evaluate {((1)/(3))^(-1)-((1)/(4))^(-1)}^(-1) (ii) ((5)/(8))^(-7)xx((8)/(5))^(-4)

Simplify (i) 3^((1)/(4)) xx 5^((1)/(4)) (ii) 2^((5)/(8)) xx 3^((5)/(8)) (iii) 6^((1)/(2)) xx 7^((1)/(2))