Home
Class 7
MATHS
(frac(1)(2))^(-2)+(frac(1)(3))^(-2)+(fra...

`(frac(1)(2))^(-2)+(frac(1)(3))^(-2)+(frac(1)(4))^(-2)=`?

A

`frac(61)(144)`

B

`29`

C

`frac(144)(61)`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \((\frac{1}{2})^{-2} + (\frac{1}{3})^{-2} + (\frac{1}{4})^{-2}\), we will follow these steps: ### Step 1: Apply the property of negative exponents The property of negative exponents states that \(a^{-n} = \frac{1}{a^n}\). Therefore, we can rewrite each term: \[ (\frac{1}{2})^{-2} = \frac{1}{(\frac{1}{2})^2} = 2^2 \] \[ (\frac{1}{3})^{-2} = \frac{1}{(\frac{1}{3})^2} = 3^2 \] \[ (\frac{1}{4})^{-2} = \frac{1}{(\frac{1}{4})^2} = 4^2 \] ### Step 2: Calculate the squares Now we calculate the squares of 2, 3, and 4: \[ 2^2 = 4 \] \[ 3^2 = 9 \] \[ 4^2 = 16 \] ### Step 3: Add the results Now we add the results from Step 2 together: \[ 4 + 9 + 16 \] Calculating this gives: \[ 4 + 9 = 13 \] \[ 13 + 16 = 29 \] ### Final Answer Thus, the final result of the expression \((\frac{1}{2})^{-2} + (\frac{1}{3})^{-2} + (\frac{1}{4})^{-2}\) is: \[ \boxed{29} \] ---
Promotional Banner

Topper's Solved these Questions

  • EXPONENTS

    RS AGGARWAL|Exercise TEST PAPER-5|14 Videos
  • EXPONENTS

    RS AGGARWAL|Exercise EXERCISE 5B|4 Videos
  • DECIMALS

    RS AGGARWAL|Exercise TEST PAPER-3(D)|5 Videos
  • FRACTIONS

    RS AGGARWAL|Exercise TEST PAPER-2|26 Videos

Similar Questions

Explore conceptually related problems

{(frac(1)(3))^(-3)-(frac(1)(2))^(-3)}= ?

{(frac(1)(3))^(-3)-(frac(1)(2))^(-3)} div (frac(1)(4))^(-3)= ?

(frac(-1)(2))^(-1)= ?

(frac(-1)(2))^(3)= ?

(frac(-2)(3))^(2)= ?

(frac(-3)(2))^(-1)= ?

Simplify and express each of the following as a rational number: ( i ) (frac(3)(2))^(-3) xx (frac(3)(2))^(-2) ( ii ) (frac(3)(4))^(-2) xx (frac(5)(2))^(-3) ( iii ) (frac(-2)(3))^(-4) xx (frac(-3)(5))^(2)

(frac(-1)(5))^(3) div (frac(-1)(5))^(8)= ?

Solve (1-frac(1)(2))(1-frac(1)(3))(1-frac(1)(4))....(1-frac(1)(n))

Simplify each of the following and express each as a rational number: ( i ) (frac(3)(2))^(4) xx (frac(1)(5))^(2) ( ii ) (frac(-2)(3))^(5) xx (frac(-3)(7))^(3) ( iii ) (frac(-1)(2))^(5) xx 2^(3) xx (frac(3)(4))^(2) ( iv ) (frac(2)(3))^(2) xx (frac(-3)(5))^(3) xx (frac(7)(2))^(2) ( v ) {(frac(-3)(4))^(3)-(frac(-5)(2))^(3)} xx 4^(2)