Home
Class 7
MATHS
{(frac(3)(4))^(-1)-(frac(1)(4))^(-1)}^(-...

`{(frac(3)(4))^(-1)-(frac(1)(4))^(-1)}^(-1)=` ?

A

(a) `frac(3)(8)`

B

(b) `frac(-3)(8)`

C

(c) `frac(8)(3)`

D

(d) `frac(-8)(3)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \(\left(\left(\frac{3}{4}\right)^{-1} - \left(\frac{1}{4}\right)^{-1}\right)^{-1}\), we will follow these steps: ### Step 1: Simplify the individual terms with negative exponents Using the property of exponents that \(a^{-n} = \frac{1}{a^n}\), we can rewrite the terms: \[ \left(\frac{3}{4}\right)^{-1} = \frac{4}{3} \] \[ \left(\frac{1}{4}\right)^{-1} = 4 \] ### Step 2: Substitute back into the expression Now we substitute these values back into the original expression: \[ \left(\frac{4}{3} - 4\right)^{-1} \] ### Step 3: Find a common denominator and simplify To subtract \(\frac{4}{3}\) and \(4\), we need a common denominator. The common denominator is \(3\): \[ 4 = \frac{12}{3} \] Now we can perform the subtraction: \[ \frac{4}{3} - \frac{12}{3} = \frac{4 - 12}{3} = \frac{-8}{3} \] ### Step 4: Take the reciprocal of the result Now we take the reciprocal of the result: \[ \left(\frac{-8}{3}\right)^{-1} = \frac{3}{-8} = -\frac{3}{8} \] ### Final Answer Thus, the final answer is: \[ -\frac{3}{8} \] ---
Promotional Banner

Topper's Solved these Questions

  • EXPONENTS

    RS AGGARWAL|Exercise TEST PAPER-5|14 Videos
  • EXPONENTS

    RS AGGARWAL|Exercise EXERCISE 5B|4 Videos
  • DECIMALS

    RS AGGARWAL|Exercise TEST PAPER-3(D)|5 Videos
  • FRACTIONS

    RS AGGARWAL|Exercise TEST PAPER-2|26 Videos

Similar Questions

Explore conceptually related problems

Express each of the following as a rational number: ( i ) 5^(-3) ( ii ) (-2)^(-5) ( iii ) (frac(1)(4))^(-4) ( iv ) (frac(-3)(4))^(-3) ( v ) (-3)^(-1) xx (frac(1)(3))^(-1) ( vi ) (frac(5)(7))^(-1) xx (frac(7)(4))^(-1) ( vii ) (5^(-1)-7^(-1))^(-1) ( viii ) {(frac(4)(3))^(-1)-(frac(1)(4))^(-1)}^(-1) ( ix ) {(frac(3)(2))^(-1) div (frac(-2)(5))^(-1)} ( x ) (frac(23)(25))^(@)

{6^(-1)+(frac(3)(2))^(-1)}^(-1)= ?

{(frac(1)(3))^(-3)-(frac(1)(2))^(-3)}= ?

{(frac(1)(3))^(2)}^(4)= ?

(frac(-3)(2))^(-1)= ?

(frac(-1)(2))^(-1)= ?

Simplify each of the following and express each as a rational number: ( i ) (frac(3)(2))^(4) xx (frac(1)(5))^(2) ( ii ) (frac(-2)(3))^(5) xx (frac(-3)(7))^(3) ( iii ) (frac(-1)(2))^(5) xx 2^(3) xx (frac(3)(4))^(2) ( iv ) (frac(2)(3))^(2) xx (frac(-3)(5))^(3) xx (frac(7)(2))^(2) ( v ) {(frac(-3)(4))^(3)-(frac(-5)(2))^(3)} xx 4^(2)

{(frac(1)(3))^(-3)-(frac(1)(2))^(-3)} div (frac(1)(4))^(-3)= ?

(frac(1)(2))^(-2)+(frac(1)(3))^(-2)+(frac(1)(4))^(-2)= ?

(frac(-5)(3))^(-1)= ?