Home
Class 7
MATHS
{(frac(1)(3))^(2)}^(4)= ?...

`{(frac(1)(3))^(2)}^(4)=` ?

A

(a) `(frac(1)(3))^(6)`

B

(b) `(frac(1)(3))^(8)`

C

(c) `(frac(1)(3))^(16)`

D

(d) `(frac(1)(3))^(24)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \(\left(\frac{1}{3}\right)^{2}\) raised to the power of 4, we can follow these steps: ### Step 1: Understand the expression The expression we have is \(\left(\frac{1}{3}\right)^{2}\) raised to the power of 4. This can be written as: \[ \left(\left(\frac{1}{3}\right)^{2}\right)^{4} \] ### Step 2: Apply the power of a power rule According to the power of a power rule in exponents, when you raise a power to another power, you multiply the exponents. Therefore, we can rewrite the expression as: \[ \left(\frac{1}{3}\right)^{2 \times 4} \] ### Step 3: Calculate the new exponent Now, calculate the multiplication of the exponents: \[ 2 \times 4 = 8 \] So, we have: \[ \left(\frac{1}{3}\right)^{8} \] ### Step 4: Write the final answer Thus, the final answer is: \[ \left(\frac{1}{3}\right)^{8} \] ### Summary of the solution: The expression \(\left(\frac{1}{3}\right)^{2}\) raised to the power of 4 simplifies to \(\left(\frac{1}{3}\right)^{8}\). ---
Promotional Banner

Topper's Solved these Questions

  • EXPONENTS

    RS AGGARWAL|Exercise TEST PAPER-5|14 Videos
  • EXPONENTS

    RS AGGARWAL|Exercise EXERCISE 5B|4 Videos
  • DECIMALS

    RS AGGARWAL|Exercise TEST PAPER-3(D)|5 Videos
  • FRACTIONS

    RS AGGARWAL|Exercise TEST PAPER-2|26 Videos

Similar Questions

Explore conceptually related problems

{(frac(3)(4))^(-1)-(frac(1)(4))^(-1)}^(-1)= ?

Simplify: ( i ) [{(frac(-1)(4))^(2)}^(-2)]^(-1) ( ii ) {(frac(-2)(3))^(2)}^(3) ( iii ) (frac(-3)(2))^(2) div (frac(-3)(2))^(6) ( iv ) (frac(-2)(3))^(7) div (frac(-2)(3))^(4)

{6^(-1)+(frac(3)(2))^(-1)}^(-1)= ?

(frac(-1)(2))^(3)= ?

(frac(3)(4))^(0)= ?

EXAMPLE 13. Simplify: (frac(1)(2))^(-2)+(frac(1)(3))^(-2)+(frac(1)(4))^(-2)

(frac(1)(2))^(-2)+(frac(1)(3))^(-2)+(frac(1)(4))^(-2)= ?

{(frac(1)(3))^(-3)-(frac(1)(2))^(-3)} div (frac(1)(4))^(-3)= ?

Simplify each of the following and express each as a rational number: ( i ) (frac(3)(2))^(4) xx (frac(1)(5))^(2) ( ii ) (frac(-2)(3))^(5) xx (frac(-3)(7))^(3) ( iii ) (frac(-1)(2))^(5) xx 2^(3) xx (frac(3)(4))^(2) ( iv ) (frac(2)(3))^(2) xx (frac(-3)(5))^(3) xx (frac(7)(2))^(2) ( v ) {(frac(-3)(4))^(3)-(frac(-5)(2))^(3)} xx 4^(2)

{(frac(1)(3))^(-3)-(frac(1)(2))^(-3)}= ?