Home
Class 7
MATHS
(frac(-3)(2))^(-1)= ?...

`(frac(-3)(2))^(-1)=` ?

A

(a) `frac(2)(3)`

B

(b) `frac(-2)(3)`

C

(c) `frac(3)(2)`

D

(d) none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \((\frac{-3}{2})^{-1}\), we can follow these steps: ### Step 1: Understand the Negative Exponent The negative exponent indicates that we need to take the reciprocal of the base. In this case, the base is \(\frac{-3}{2}\). ### Step 2: Write the Reciprocal Taking the reciprocal of \(\frac{-3}{2}\) gives us: \[ \frac{-2}{-3} \] ### Step 3: Simplify the Expression When we simplify \(\frac{-2}{-3}\), the negatives cancel out: \[ \frac{-2}{-3} = \frac{2}{3} \] ### Final Answer Thus, the value of \((\frac{-3}{2})^{-1}\) is: \[ \frac{2}{3} \] ---
Promotional Banner

Topper's Solved these Questions

  • EXPONENTS

    RS AGGARWAL|Exercise TEST PAPER-5|14 Videos
  • EXPONENTS

    RS AGGARWAL|Exercise EXERCISE 5B|4 Videos
  • DECIMALS

    RS AGGARWAL|Exercise TEST PAPER-3(D)|5 Videos
  • FRACTIONS

    RS AGGARWAL|Exercise TEST PAPER-2|26 Videos

Similar Questions

Explore conceptually related problems

(frac(-1)(2))^(-1)= ?

(frac(-5)(3))^(-1)= ?

(frac(-1)(2))^(3)= ?

Express each of the following as a rational number: ( i ) 5^(-3) ( ii ) (-2)^(-5) ( iii ) (frac(1)(4))^(-4) ( iv ) (frac(-3)(4))^(-3) ( v ) (-3)^(-1) xx (frac(1)(3))^(-1) ( vi ) (frac(5)(7))^(-1) xx (frac(7)(4))^(-1) ( vii ) (5^(-1)-7^(-1))^(-1) ( viii ) {(frac(4)(3))^(-1)-(frac(1)(4))^(-1)}^(-1) ( ix ) {(frac(3)(2))^(-1) div (frac(-2)(5))^(-1)} ( x ) (frac(23)(25))^(@)

{(frac(1)(3))^(-3)-(frac(1)(2))^(-3)}= ?

Simplify and express each of the following as a rational number: ( i ) (frac(3)(2))^(-3) xx (frac(3)(2))^(-2) ( ii ) (frac(3)(4))^(-2) xx (frac(5)(2))^(-3) ( iii ) (frac(-2)(3))^(-4) xx (frac(-3)(5))^(2)

(frac(-2)(3))^(2)= ?

(frac(2)(3))^(-5)= ?

(frac(1)(2))^(-2)+(frac(1)(3))^(-2)+(frac(1)(4))^(-2)= ?

{(frac(1)(3))^(-3)-(frac(1)(2))^(-3)} div (frac(1)(4))^(-3)= ?