Home
Class 7
MATHS
(3^(2)-2^(2)) xx (frac(2)(3))^(-3)= ?...

`(3^(2)-2^(2)) xx (frac(2)(3))^(-3)=` ?

A

(a) `frac(45)(8)`

B

(b) `frac(8)(45)`

C

(c) `frac(8)(135)`

D

(d) `frac(135)(8)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \((3^2 - 2^2) \times \left(\frac{2}{3}\right)^{-3}\), we will follow these steps: ### Step 1: Calculate \(3^2\) and \(2^2\) First, we calculate \(3^2\) and \(2^2\): \[ 3^2 = 9 \] \[ 2^2 = 4 \] ### Step 2: Subtract the results Next, we subtract \(2^2\) from \(3^2\): \[ 3^2 - 2^2 = 9 - 4 = 5 \] ### Step 3: Simplify \(\left(\frac{2}{3}\right)^{-3}\) Now, we need to simplify \(\left(\frac{2}{3}\right)^{-3}\). A negative exponent means we take the reciprocal: \[ \left(\frac{2}{3}\right)^{-3} = \left(\frac{3}{2}\right)^{3} \] ### Step 4: Calculate \(\left(\frac{3}{2}\right)^{3}\) Now we calculate \(\left(\frac{3}{2}\right)^{3}\): \[ \left(\frac{3}{2}\right)^{3} = \frac{3^3}{2^3} = \frac{27}{8} \] ### Step 5: Multiply the results Finally, we multiply the results from Step 2 and Step 4: \[ 5 \times \frac{27}{8} = \frac{5 \times 27}{8} = \frac{135}{8} \] ### Final Answer Thus, the value of the expression \((3^2 - 2^2) \times \left(\frac{2}{3}\right)^{-3}\) is: \[ \frac{135}{8} \] ---
Promotional Banner

Topper's Solved these Questions

  • EXPONENTS

    RS AGGARWAL|Exercise TEST PAPER-5|14 Videos
  • EXPONENTS

    RS AGGARWAL|Exercise EXERCISE 5B|4 Videos
  • DECIMALS

    RS AGGARWAL|Exercise TEST PAPER-3(D)|5 Videos
  • FRACTIONS

    RS AGGARWAL|Exercise TEST PAPER-2|26 Videos

Similar Questions

Explore conceptually related problems

(frac(2)(3))^(-5)= ?

(frac(-2)(3))^(2)= ?

(frac(-3)(2))^(-1)= ?

(frac(-1)(2))^(3)= ?

Simplify and express each of the following as a rational number: ( i ) (frac(3)(2))^(-3) xx (frac(3)(2))^(-2) ( ii ) (frac(3)(4))^(-2) xx (frac(5)(2))^(-3) ( iii ) (frac(-2)(3))^(-4) xx (frac(-3)(5))^(2)

{(frac(1)(3))^(2)}^(4)= ?

Evaluate: ( i ) (frac(3)(4))^(2) ( ii ) (frac(-2)(3))^(3) ( iii ) (frac(-4)(5))^(5)

{(frac(1)(3))^(-3)-(frac(1)(2))^(-3)} div (frac(1)(4))^(-3)= ?

Simplify each of the following and express each as a rational number: ( i ) (frac(3)(2))^(4) xx (frac(1)(5))^(2) ( ii ) (frac(-2)(3))^(5) xx (frac(-3)(7))^(3) ( iii ) (frac(-1)(2))^(5) xx 2^(3) xx (frac(3)(4))^(2) ( iv ) (frac(2)(3))^(2) xx (frac(-3)(5))^(3) xx (frac(7)(2))^(2) ( v ) {(frac(-3)(4))^(3)-(frac(-5)(2))^(3)} xx 4^(2)