Home
Class 7
MATHS
{(frac(1)(3))^(-3)-(frac(1)(2))^(-3)} di...

`{(frac(1)(3))^(-3)-(frac(1)(2))^(-3)} div (frac(1)(4))^(-3)=` ?

A

`frac(19)(64)`

B

`frac(64)(19)`

C

`frac(27)(16)`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \(\left(\left(\frac{1}{3}\right)^{-3} - \left(\frac{1}{2}\right)^{-3}\right) \div \left(\frac{1}{4}\right)^{-3}\), we will follow these steps: ### Step 1: Rewrite the expression We start with the expression: \[ \left(\left(\frac{1}{3}\right)^{-3} - \left(\frac{1}{2}\right)^{-3}\right) \div \left(\frac{1}{4}\right)^{-3} \] ### Step 2: Convert negative exponents to positive Recall that \(a^{-n} = \frac{1}{a^n}\). Therefore, we can rewrite the terms with negative exponents: \[ \left(\left(\frac{1}{3}\right)^{-3} = 3^3\right) \quad \text{and} \quad \left(\frac{1}{2}\right)^{-3} = 2^3 \quad \text{and} \quad \left(\frac{1}{4}\right)^{-3} = 4^3 \] Thus, we can rewrite the expression as: \[ \left(3^3 - 2^3\right) \div 4^3 \] ### Step 3: Calculate the powers Now we calculate the powers: \[ 3^3 = 27, \quad 2^3 = 8, \quad \text{and} \quad 4^3 = 64 \] ### Step 4: Substitute the values back into the expression Substituting these values back, we have: \[ \left(27 - 8\right) \div 64 \] ### Step 5: Perform the subtraction Now, we perform the subtraction: \[ 27 - 8 = 19 \] ### Step 6: Divide by \(64\) Now we divide by \(64\): \[ \frac{19}{64} \] ### Final Answer Thus, the final answer is: \[ \frac{19}{64} \] ---
Promotional Banner

Topper's Solved these Questions

  • EXPONENTS

    RS AGGARWAL|Exercise TEST PAPER-5|14 Videos
  • EXPONENTS

    RS AGGARWAL|Exercise EXERCISE 5B|4 Videos
  • DECIMALS

    RS AGGARWAL|Exercise TEST PAPER-3(D)|5 Videos
  • FRACTIONS

    RS AGGARWAL|Exercise TEST PAPER-2|26 Videos

Similar Questions

Explore conceptually related problems

(frac(-3)(4))^(-3)= ?

(frac(-1)(5))^(3) div (frac(-1)(5))^(8)= ?

(frac(-3)(2))^(-1)= ?

(frac(-5)(3))^(-1)= ?

(frac(1)(2))^(-2)+(frac(1)(3))^(-2)+(frac(1)(4))^(-2)= ?

(frac(3)(4))^(0)= ?

EXAMPLE 13. Simplify: (frac(1)(2))^(-2)+(frac(1)(3))^(-2)+(frac(1)(4))^(-2)

(frac(-2)(3))^(10) div (frac(-2)(3))^(8)= ?

Simplify each of the following and express each as a rational number: ( i ) (frac(2)(3))^(4) xx (frac(2)(3))^(2) ( ii ) (frac(-3)(4))^(3) xx (frac(-3)(4))^(2) ( iii ) (frac(5)(7))^(5) xx (frac(5)(7))^(-3) ( iv ) (frac(-3)(5))^(-3) xx (frac(-3)(5))^(2)

{(frac(3)(4))^(-1)-(frac(1)(4))^(-1)}^(-1)= ?