Home
Class 7
MATHS
(frac(-1)(5))^(3) div (frac(-1)(5))^(8)=...

`(frac(-1)(5))^(3) div (frac(-1)(5))^(8)=` ?

A

(a) `(-frac(1)(5))^(5)`

B

(b) `(frac(-1)(5))^(11)`

C

(c) `(-5)^(5)`

D

(d) `(frac(1)(5))^(5)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \((\frac{-1}{5})^{3} \div (\frac{-1}{5})^{8}\), we can use the laws of exponents. Here’s a step-by-step solution: ### Step 1: Identify the bases and apply the division rule for exponents The bases in both parts of the expression are the same, which is \(-\frac{1}{5}\). According to the laws of exponents, when dividing two expressions with the same base, we subtract the exponents. \[ \frac{(-1/5)^{3}}{(-1/5)^{8}} = (-1/5)^{3-8} \] ### Step 2: Simplify the exponent Now, we simplify the exponent: \[ 3 - 8 = -5 \] So, we have: \[ (-1/5)^{-5} \] ### Step 3: Apply the negative exponent rule A negative exponent means we take the reciprocal of the base. Therefore: \[ (-1/5)^{-5} = \frac{1}{(-1/5)^{5}} \] ### Step 4: Calculate \((-1/5)^{5}\) Now we need to calculate \((-1/5)^{5}\): \[ (-1/5)^{5} = \frac{(-1)^{5}}{5^{5}} = \frac{-1}{5^{5}} \] ### Step 5: Calculate \(5^{5}\) Now, we calculate \(5^{5}\): \[ 5^{5} = 5 \times 5 \times 5 \times 5 \times 5 = 3125 \] ### Step 6: Substitute back into the expression Now we substitute back into our expression: \[ (-1/5)^{-5} = \frac{1}{\frac{-1}{3125}} = -3125 \] ### Final Answer Thus, the final answer is: \[ (\frac{-1}{5})^{3} \div (\frac{-1}{5})^{8} = -3125 \] ---
Promotional Banner

Topper's Solved these Questions

  • EXPONENTS

    RS AGGARWAL|Exercise TEST PAPER-5|14 Videos
  • EXPONENTS

    RS AGGARWAL|Exercise EXERCISE 5B|4 Videos
  • DECIMALS

    RS AGGARWAL|Exercise TEST PAPER-3(D)|5 Videos
  • FRACTIONS

    RS AGGARWAL|Exercise TEST PAPER-2|26 Videos

Similar Questions

Explore conceptually related problems

(frac(-2)(5))^(7) div (frac(-2)(5))^(5)= ?

(frac(-2)(3))^(10) div (frac(-2)(3))^(8)= ?

{(frac(1)(3))^(-3)-(frac(1)(2))^(-3)} div (frac(1)(4))^(-3)= ?

(frac(-5)(3))^(-1)= ?

Express each of the following as a rational number: ( i ) 5^(-3) ( ii ) (-2)^(-5) ( iii ) (frac(1)(4))^(-4) ( iv ) (frac(-3)(4))^(-3) ( v ) (-3)^(-1) xx (frac(1)(3))^(-1) ( vi ) (frac(5)(7))^(-1) xx (frac(7)(4))^(-1) ( vii ) (5^(-1)-7^(-1))^(-1) ( viii ) {(frac(4)(3))^(-1)-(frac(1)(4))^(-1)}^(-1) ( ix ) {(frac(3)(2))^(-1) div (frac(-2)(5))^(-1)} ( x ) (frac(23)(25))^(@)

Simplify: ( i ) [{(frac(-1)(4))^(2)}^(-2)]^(-1) ( ii ) {(frac(-2)(3))^(2)}^(3) ( iii ) (frac(-3)(2))^(2) div (frac(-3)(2))^(6) ( iv ) (frac(-2)(3))^(7) div (frac(-2)(3))^(4)

Simplify each of the following and express each as a rational number: ( i ) (frac(3)(2))^(4) xx (frac(1)(5))^(2) ( ii ) (frac(-2)(3))^(5) xx (frac(-3)(7))^(3) ( iii ) (frac(-1)(2))^(5) xx 2^(3) xx (frac(3)(4))^(2) ( iv ) (frac(2)(3))^(2) xx (frac(-3)(5))^(3) xx (frac(7)(2))^(2) ( v ) {(frac(-3)(4))^(3)-(frac(-5)(2))^(3)} xx 4^(2)

Express each of the following as a rational number: ( i ) (frac(2)(3))^(3) ( ii ) (frac(-8)(5))^(3) ( iii ) (frac(-13)(11))^(2) ( iv ) (frac(1)(6))^(3) ( v ) (frac(-1)(2))^(5) ( vi ) (frac(-3)(4))^(4) ( vii ) (frac(-4)(7))^(3) ( viii ) (-1)^(9)

Simplify each of the following and express each as a rational number: ( i ) (frac(2)(3))^(4) xx (frac(2)(3))^(2) ( ii ) (frac(-3)(4))^(3) xx (frac(-3)(4))^(2) ( iii ) (frac(5)(7))^(5) xx (frac(5)(7))^(-3) ( iv ) (frac(-3)(5))^(-3) xx (frac(-3)(5))^(2)

Evaluate: ( i ) (frac(3)(4))^(2) ( ii ) (frac(-2)(3))^(3) ( iii ) (frac(-4)(5))^(5)