Home
Class 7
MATHS
Simplify: frac(16 xx 2^(n+1)-8 xx 2^(n))...

Simplify: `frac(16 xx 2^(n+1)-8 xx 2^(n))(16 xx 2^(n+2)-4 xx 2^(n+1))`

A

`frac(4)(7)`

B

`frac(1)(7)`

C

`frac(2)(7)`

D

`frac(3)(7)`

Text Solution

AI Generated Solution

The correct Answer is:
To simplify the expression \(\frac{16 \cdot 2^{n+1} - 8 \cdot 2^n}{16 \cdot 2^{n+2} - 4 \cdot 2^{n+1}}\), we can follow these steps: ### Step 1: Factor out common terms in the numerator In the numerator \(16 \cdot 2^{n+1} - 8 \cdot 2^n\), we can factor out \(8 \cdot 2^n\): \[ 8 \cdot 2^n (2^{1} - 1) = 8 \cdot 2^n (2 - 1) = 8 \cdot 2^n \cdot 1 = 8 \cdot 2^n \] ### Step 2: Factor out common terms in the denominator In the denominator \(16 \cdot 2^{n+2} - 4 \cdot 2^{n+1}\), we can factor out \(4 \cdot 2^{n+1}\): \[ 4 \cdot 2^{n+1} (4 - 1) = 4 \cdot 2^{n+1} \cdot 3 = 12 \cdot 2^{n+1} \] ### Step 3: Rewrite the expression Now we can rewrite the expression using the factored forms: \[ \frac{8 \cdot 2^n}{12 \cdot 2^{n+1}} \] ### Step 4: Simplify the fraction We can simplify the fraction: \[ \frac{8}{12} \cdot \frac{2^n}{2^{n+1}} = \frac{2}{3} \cdot \frac{1}{2} = \frac{2}{6} = \frac{1}{3} \] ### Final Result Thus, the simplified form of the expression is: \[ \frac{1}{3} \] ---
Promotional Banner

Topper's Solved these Questions

  • EXPONENTS

    RS AGGARWAL|Exercise EXERCISE 5C|21 Videos
  • DECIMALS

    RS AGGARWAL|Exercise TEST PAPER-3(D)|5 Videos
  • FRACTIONS

    RS AGGARWAL|Exercise TEST PAPER-2|26 Videos

Similar Questions

Explore conceptually related problems

Simplify: frac(16 xx 2^(n+1)-4 xx 2^(n))(16 xx 2^(n+2)-2 xx 2^(n+2)).

Simiplify : (16xx2^(n+1)-4xx2^(n))/(16xx2^(n+2)-2xx2^(n+1))

Simplify :(16xx2^(n+1)-4xx2^(n))/(16xx2^(n+2)-2xx2^(n+2))

Simplify each of the following: (a)\ (7^n-3\ xx\ 7^(n+1))/(20\ xx\ 7^n-2\ xx\ 7^n) (b)\ (5^n-6\ xx\ 5^(n+1))/(9\ xx\ 5^n-2^2xx\ 5^n) (c)\ (16\ xx\ 2^(n+1)-4\ xx\ 2^n)/(16\ xx\ 2^(n+2)-2\ xx\ 2^(n+2))

The value of (6^(n) xx 2^(2n) xx 3^(3n))/(30^(n) xx 3^(2n) xx 2^(3n)) is equal to

(5^(n+2)-6xx5^(n+1))/(13xx5^(n)-2xx5^(n+1))

(16*2^(n+1)-4*2^(n))/(16*2^(n+2)-2*2^(n+2))