Home
Class 7
MATHS
(frac(-3)(4))^(-3)= ?...

`(frac(-3)(4))^(-3)=` ?

A

(a) `frac(27)(64)`

B

(b) `frac(64)(27)`

C

(c) `frac(-27)(64)`

D

(d) `frac(-64)(27)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \((\frac{-3}{4})^{-3}\), we can follow these steps: ### Step 1: Rewrite the expression using the property of negative exponents Using the property of negative exponents, we can rewrite the expression as: \[ (\frac{-3}{4})^{-3} = \frac{1}{(\frac{-3}{4})^{3}} \] ### Step 2: Calculate the cube of the fraction Now we need to calculate \((\frac{-3}{4})^{3}\): \[ (\frac{-3}{4})^{3} = \frac{(-3)^{3}}{(4)^{3}} = \frac{-27}{64} \] ### Step 3: Substitute back into the expression Now we substitute back into our expression from Step 1: \[ \frac{1}{(\frac{-3}{4})^{3}} = \frac{1}{\frac{-27}{64}} = \frac{64}{-27} \] ### Step 4: Simplify the fraction This can be simplified to: \[ \frac{64}{-27} = -\frac{64}{27} \] ### Final Answer Thus, the final answer is: \[ -\frac{64}{27} \] ---
Promotional Banner

Topper's Solved these Questions

  • EXPONENTS

    RS AGGARWAL|Exercise EXERCISE 5C|21 Videos
  • DECIMALS

    RS AGGARWAL|Exercise TEST PAPER-3(D)|5 Videos
  • FRACTIONS

    RS AGGARWAL|Exercise TEST PAPER-2|26 Videos

Similar Questions

Explore conceptually related problems

(frac(-3)(2))^(-1)= ?

{(frac(1)(3))^(-3)-(frac(1)(2))^(-3)} div (frac(1)(4))^(-3)= ?

(frac(3)(4))^(0)= ?

Express each of the following as a rational number: ( i ) 5^(-3) ( ii ) (-2)^(-5) ( iii ) (frac(1)(4))^(-4) ( iv ) (frac(-3)(4))^(-3) ( v ) (-3)^(-1) xx (frac(1)(3))^(-1) ( vi ) (frac(5)(7))^(-1) xx (frac(7)(4))^(-1) ( vii ) (5^(-1)-7^(-1))^(-1) ( viii ) {(frac(4)(3))^(-1)-(frac(1)(4))^(-1)}^(-1) ( ix ) {(frac(3)(2))^(-1) div (frac(-2)(5))^(-1)} ( x ) (frac(23)(25))^(@)

(frac(-5)(3))^(-1)= ?

(frac(1)(2))^(-2)+(frac(1)(3))^(-2)+(frac(1)(4))^(-2)= ?

(frac(-1)(2))^(3)= ?

{(frac(1)(3))^(-3)-(frac(1)(2))^(-3)}= ?

(frac(2)(3))^(-5)= ?

(frac(-2)(3))^(2)= ?