Home
Class 7
MATHS
(frac(-2)(3))^(10) div (frac(-2)(3))^(8)...

`(frac(-2)(3))^(10) div (frac(-2)(3))^(8)=` ?

A

(a) `frac(4)(9)`

B

(b) `frac(-4)(9)`

C

(c) `(frac(-2)(3))^(18)`

D

(d) none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \((\frac{-2}{3})^{10} \div (\frac{-2}{3})^{8}\), we can use the laws of exponents. Here’s a step-by-step solution: ### Step 1: Identify the bases and exponents The bases in both parts of the expression are the same: \(\frac{-2}{3}\). The exponents are 10 and 8. ### Step 2: Apply the law of exponents for division According to the laws of exponents, when dividing two expressions with the same base, we subtract the exponents: \[ a^m \div a^n = a^{m-n} \] In our case: \[ (\frac{-2}{3})^{10} \div (\frac{-2}{3})^{8} = (\frac{-2}{3})^{10-8} \] ### Step 3: Perform the subtraction of the exponents Now we subtract the exponents: \[ 10 - 8 = 2 \] So we have: \[ (\frac{-2}{3})^{10-8} = (\frac{-2}{3})^{2} \] ### Step 4: Calculate the result Now we can calculate \((\frac{-2}{3})^{2}\): \[ (\frac{-2}{3})^{2} = \frac{(-2)^{2}}{3^{2}} = \frac{4}{9} \] ### Final Answer Thus, the final result of the expression \((\frac{-2}{3})^{10} \div (\frac{-2}{3})^{8}\) is: \[ \frac{4}{9} \] ---
Promotional Banner

Topper's Solved these Questions

  • EXPONENTS

    RS AGGARWAL|Exercise EXERCISE 5C|21 Videos
  • DECIMALS

    RS AGGARWAL|Exercise TEST PAPER-3(D)|5 Videos
  • FRACTIONS

    RS AGGARWAL|Exercise TEST PAPER-2|26 Videos

Similar Questions

Explore conceptually related problems

(frac(-2)(3))^(2)= ?

(frac(-2)(5))^(7) div (frac(-2)(5))^(5)= ?

(frac(2)(3))^(-5)= ?

(frac(-1)(5))^(3) div (frac(-1)(5))^(8)= ?

(frac(-3)(2))^(-1)= ?

Simplify: ( i ) [{(frac(-1)(4))^(2)}^(-2)]^(-1) ( ii ) {(frac(-2)(3))^(2)}^(3) ( iii ) (frac(-3)(2))^(2) div (frac(-3)(2))^(6) ( iv ) (frac(-2)(3))^(7) div (frac(-2)(3))^(4)

(frac(-1)(2))^(3)= ?

Express each of the following as a rational number: ( i ) 5^(-3) ( ii ) (-2)^(-5) ( iii ) (frac(1)(4))^(-4) ( iv ) (frac(-3)(4))^(-3) ( v ) (-3)^(-1) xx (frac(1)(3))^(-1) ( vi ) (frac(5)(7))^(-1) xx (frac(7)(4))^(-1) ( vii ) (5^(-1)-7^(-1))^(-1) ( viii ) {(frac(4)(3))^(-1)-(frac(1)(4))^(-1)}^(-1) ( ix ) {(frac(3)(2))^(-1) div (frac(-2)(5))^(-1)} ( x ) (frac(23)(25))^(@)

{(frac(1)(3))^(-3)-(frac(1)(2))^(-3)} div (frac(1)(4))^(-3)= ?

Evaluate: ( i ) (frac(3)(4))^(2) ( ii ) (frac(-2)(3))^(3) ( iii ) (frac(-4)(5))^(5)