Home
Class 7
MATHS
Take away ((8)/(5)x^(2) - (2)/(3)x^(3) +...

Take away `((8)/(5)x^(2) - (2)/(3)x^(3) + (3)/(2)x -1)` from `((x^(3))/(5) - (3)/(2)x^(2) + (2)/(3)x + (1)/(4))`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem of taking away the expression \(\frac{8}{5}x^2 - \frac{2}{3}x^3 + \frac{3}{2}x - 1\) from \(\frac{x^3}{5} - \frac{3}{2}x^2 + \frac{2}{3}x + \frac{1}{4}\), we will perform the subtraction step by step. ### Step-by-Step Solution: 1. **Write the expressions clearly**: We have two expressions: - Expression 1: \(\frac{x^3}{5} - \frac{3}{2}x^2 + \frac{2}{3}x + \frac{1}{4}\) - Expression 2: \(\frac{8}{5}x^2 - \frac{2}{3}x^3 + \frac{3}{2}x - 1\) We need to subtract Expression 2 from Expression 1. 2. **Set up the subtraction**: \[ \left(\frac{x^3}{5} - \frac{3}{2}x^2 + \frac{2}{3}x + \frac{1}{4}\right) - \left(\frac{8}{5}x^2 - \frac{2}{3}x^3 + \frac{3}{2}x - 1\right) \] 3. **Distribute the negative sign**: When we subtract the second expression, we need to change the signs of each term in it: \[ \frac{x^3}{5} - \frac{3}{2}x^2 + \frac{2}{3}x + \frac{1}{4} - \frac{8}{5}x^2 + \frac{2}{3}x^3 - \frac{3}{2}x + 1 \] 4. **Combine like terms**: Now, we will combine like terms: - For \(x^3\): \(\frac{x^3}{5} + \frac{2}{3}x^3\) - For \(x^2\): \(-\frac{3}{2}x^2 - \frac{8}{5}x^2\) - For \(x\): \(\frac{2}{3}x - \frac{3}{2}x\) - Constant terms: \(\frac{1}{4} + 1\) 5. **Finding a common denominator**: - For \(x^3\): The common denominator of 5 and 3 is 15. \[ \frac{x^3}{5} = \frac{3x^3}{15}, \quad \frac{2}{3}x^3 = \frac{10x^3}{15} \quad \Rightarrow \quad \frac{3x^3 + 10x^3}{15} = \frac{13x^3}{15} \] - For \(x^2\): The common denominator of 2 and 5 is 10. \[ -\frac{3}{2}x^2 = -\frac{15}{10}x^2, \quad -\frac{8}{5}x^2 = -\frac{16}{10}x^2 \quad \Rightarrow \quad -\frac{15x^2 + 16x^2}{10} = -\frac{31x^2}{10} \] - For \(x\): The common denominator of 3 and 2 is 6. \[ \frac{2}{3}x = \frac{4}{6}x, \quad -\frac{3}{2}x = -\frac{9}{6}x \quad \Rightarrow \quad \frac{4x - 9x}{6} = -\frac{5x}{6} \] - For constant terms: The common denominator of 4 and 1 is 4. \[ 1 = \frac{4}{4} \quad \Rightarrow \quad \frac{1}{4} + \frac{4}{4} = \frac{5}{4} \] 6. **Final expression**: Putting it all together, we have: \[ \frac{13}{15}x^3 - \frac{31}{10}x^2 - \frac{5}{6}x + \frac{5}{4} \] ### Final Answer: \[ \frac{13}{15}x^3 - \frac{31}{10}x^2 - \frac{5}{6}x + \frac{5}{4} \]
Promotional Banner

Topper's Solved these Questions

  • ALGEBRAIC EXPRESSION

    RS AGGARWAL|Exercise SOLVED EXAMPLES|12 Videos
  • ALGEBRAIC EXPRESSION

    RS AGGARWAL|Exercise EXERCISE 6A|6 Videos
  • BAR GRAPHS

    RS AGGARWAL|Exercise EXERCISE 22|22 Videos

Similar Questions

Explore conceptually related problems

Take away: (6)/(5)x^(2)-(4)/(5)x^(3)+(5)/(6)+(3)/(2)x om (x^(3))/(3)-(5)/(2)x^(2)+(3)/(5)x+(1)/(4)

Take away (9)/(2)+(x)/(2)+(3)/(5)x^(2)+(7)/(4)x^(3) from (7)/(2)-(x)/(3)-(x^(2))/(5)

(1)/(4)(x-5)-(2)/(3)(x-2)=(1)/(3)

(5)/(8)x^((3)/(2))-:(1)/(2)x^(-(5)/(2))

Take away: (7)/(4)x^(3)+(3)/(5)x^(2)+(1)/(2)x+(9)/(2) om (7)/(2)-(x)/(3)-(x^(2))/(5)

Add: (3x^(2) - (1)/(5)x + (7)/(3)) + ((-1)/(4)x^(2) + (1)/(3)x - (1)/(6)) + (-2x^(2) - (1)/(2)x + 5)

Find each of the following products: (i) (x - 4)(x - 4) (ii) (2x - 3y)(2x - 3y) (iii) ((3)/(4) x - (5)/(6) y) ((3)/(4)x - (5)/(6) y) (iv) (x - (3)/(x)) (x - (3)/(x)) (v) ((1)/(3) x^(2) - 9) ((1)/(3) x^(2) - 9) (vi) ((1)/(2) y^(2) - (1)/(3) y) ((1)/(2) y^(2) - (1)/(3) y)

Find each of the following products: (i) (x + 3) (x - 3) (ii) (2x + 5)(2x - 5) (ii) (8 + x)(8 - x) (iv) (7x + 11y) (7x - 11y) (v) (5x^(2) + (3)/(4) y^(2)) (5x^(2) - (3)/(4) y^(2)) (vi) ((4x)/(5) - (5y)/(3)) ((4x)/(5) + (5y)/(3)) (vii) (x + (1)/(x)) (x - (1)/(x)) (viii) ((1)/(x) + (1)/(y)) ((1)/(x) - (1)/(y)) (ix) (2a + (3)/(b)) (2a - (3)/(b))

(5x)/(3)-(x-2)/(3)=(9)/(4)-(1)/(2)(x-(2x-1)/(3))

RS AGGARWAL-ALGEBRAIC EXPRESSION -EXERCISE 6D
  1. Take away ((8)/(5)x^(2) - (2)/(3)x^(3) + (3)/(2)x -1) from ((x^(3))/(5...

    Text Solution

    |

  2. Find the each of the following products: (5x +7)(3x + 4)

    Text Solution

    |

  3. Find the each of the following products: (4x - 3)(2x +5)

    Text Solution

    |

  4. Find the each of the following products: (x - 6)(4x + 9)

    Text Solution

    |

  5. Find the each of the following products: (5y - 1)(3y - 8)

    Text Solution

    |

  6. Find the each of the following products: (7x + 2y)(x + 4y)

    Text Solution

    |

  7. Find the each of the following products: (9x + 5y)(4x + 3y)

    Text Solution

    |

  8. Find the each of the following products: (3m - 4n)(2m - 3n)

    Text Solution

    |

  9. Find the each of the following products: (0.8x - 0.5y)(1.5x - 3y)

    Text Solution

    |

  10. Find the each of the following products: ((1)/(5)x + 2y)((2)/(3)x - y)

    Text Solution

    |

  11. Find the each of the following products: ((2)/(5)x - (1)/(2)y)(10x - ...

    Text Solution

    |

  12. Find the each of the following products: ((3)/(4)a + (2)/(3)b)(4a + 3b...

    Text Solution

    |

  13. Find the each of the following products: (x^(2) -a^(2))(x - a)

    Text Solution

    |

  14. Find the each of the following products: (3p^(2) + q^(2)) (2p^(2) - 3...

    Text Solution

    |

  15. Find the each of the following products: (2x^(2) - 5y^(2))(x^(2) + 3y^...

    Text Solution

    |

  16. Find the each of the following products: (x^(3) - y^(3))(x^(2) + y^(2)...

    Text Solution

    |

  17. Find the each of the following products: (x^(4) + y^(4))(x^(2) - y^(2)...

    Text Solution

    |

  18. Find the each of the following products: (x^(4) + (1)/(x^(4)))(x + (1)...

    Text Solution

    |

  19. Find the each of the following products: (x^(2) - y^(2))(x + 2y)

    Text Solution

    |

  20. Find the each of the following products: (2x + 3y - 5)(x + y)

    Text Solution

    |

  21. Find the each of the following products: (3x + 2y - 4)(x - y)

    Text Solution

    |