Home
Class 7
MATHS
Multiply: (i) -8ab^(2)c, 3a^(2)b and -...

Multiply:
` (i) -8ab^(2)c, 3a^(2)b` and `-(1)/(6)`
(ii)
`(5)/(8)a^(3)b^(2), 12a^(2)b` abd 6c
(iii) `4, (5)/(12)x` and `-8x^(2)y`
(iv) `-a, a^(2)bc` and `(-2)/(5)ab^(2)c^(2)`

Text Solution

Verified by Experts

The correct Answer is:
`4a^(3)b^(3)c`
(ii) `45a^(5)b^(3)c`
(iii) `(-40)/(3)x^(3)y`
(iv) `(2)/(5)a^(4)b^(3)c^(3)`
Promotional Banner

Topper's Solved these Questions

  • ALGEBRAIC EXPRESSION

    RS AGGARWAL|Exercise EXERCISE 6A|6 Videos
  • ALGEBRAIC EXPRESSION

    RS AGGARWAL|Exercise EXERCISE 6B|25 Videos
  • ALGEBRAIC EXPRESSION

    RS AGGARWAL|Exercise EXERCISE 6D|31 Videos
  • BAR GRAPHS

    RS AGGARWAL|Exercise EXERCISE 22|22 Videos

Similar Questions

Explore conceptually related problems

Multiply: (i) 6ab by 4b (ii) 5ab^(2)c^(3) by 7a^(2)bc (iii) -6x^(2)yz by (2)/(3)xy^(3)z^(2) (iv) (-8)/(5)a^(2)bc^(3) by (-3)/(4)ab^(2)c

Factorise each of the following : (i) 8a^(3)+b^(3)+12a^(2)b+6ab^(2) (ii) 8a^(3)-b^(3)-12a^(2)b+6ab^(2) (iii) 27-125a^(3)-135a+225a^(2) (iv) 64a^(3)-27b^(3)-144a^(2)b+108ab^(2) (v) 27p^(3)-(1)/(216)-(9)/(2)p^(2)+(1)/(4)p

Divide: (i) 5m^(2) - 30 m^(2) + 45m by 5m (ii) 8x^(2) y^(2) - 6xy + 10 x^(2) y^(3) by 2xy (iii) 9x^(2) y - 6xy + 12 xy^(2) by - 3xy (iv) 12x^(4) + 8x^(3) - 6x^(2) by -2x^(2)

Evaluate : (i) (a+6b)^(2) " " (ii) (3x-4y)^(2) " " (iii) (2a-b+c)^(2)

Show that the following points are collinear: (i) A(2, -2), B(-3, 8) and C(-1, 4) (ii) A(-5, 1), B(5, 5) and C(10, 7) (iii) A(5, 1), B(1, -1) and C(11, 4) (iv) A(8, 1), B(3, -4) and C(2, -5)

Subtract 4a^(2) + 5b^(2) - 6c^(2) + 8 from 2a^(2) -3b^(2) - 4c^(2) - 5 .

Factorise the following : (i) 9a^(2)-b^(2) " " (ii) 81x^(3)-x " " (iii) x^(3)-49xy^(2) " " (iv) a^(2)-(b-c)^(2) (v) (x-y)^(3)-x+y " " (vi)x^(2)y^(2)+1-x^(2)-y^(2) " " (vii) 25(a+b)^(2)-49(a-b)^(2) " " (viii) xy^(5)-x^(5)y (ix) x^(8)-256 " " (x) x^(8)-81y^(8)

Add: (i) 3a - 2b + 5c, 2a + 5b - 7c, -a - b + c (ii) 8a - 6ab + 5b, -6a - ab - 8b, -4a + 2ab + 3b (iii) 2x^(3) - 3x^(2) + 7x - 8, -5x^(3) + 2x^(2) - 4x + 1, 3 - 6x + 5x^(2) - x^(3) (iv) 2x^(2) - 8xy + 7y^(2) - 8xy^(2), 2xy^(2) + 6xy - y^(2) + 3x^(2), 4y^(2) - xy - x^(2) + xy^(2) (v) x^(3) + y^(3) - z^(3) + 3xyz, - x^(3) + y^(3) + z^(3) - 6xyz, - x^(3) - y^(3) - z^(3) - 8xyz (vi) 2 + x - x^(2) + 6x^(3). -6 - 2x + 4x^(2) - 3x^(3). 2 + x^(2). 3 - x^(3) + 4x - 2x^(2)

Expand : (i) (a+b-c)^(2) " " (ii) (a-2b-5c)^(2) " " (iii) (3a-2b-5c)^(2) " " (iv) (2x+(1)/(x)+1)^(2) .

If a statement is true for all the values of the variable, such statements are called as identities. Some basic identities are : (1) (a+b)^(2)=a^(2)+2ab+b^(2)=(a-b)^(2)+4ab (3) a^(2)-b^(2)=(a+b)(a-b) (4) (a+b)^(3)=a^(3)+b^(3)+3ab(a+b) (6) a^(3)+b^(3)=(a+b)^(3)=3ab(a+b)=(a+b) (a^(2)-ab) (8) (a+b+c)^(2)=a^(2)+b^(2)+c^(2)+2ab+2bc+2ca=a^(2)+b^(2)+c^(2)+2abc((1)/(a)+(1)/(b)+(1)/(c)) (10) a^(3)+b^(3)+c^(3)-3abc=(a+b+c)(a^(2)+b^(2)+c^(2)-ab-bc-ca) =1/2(a+b+c)[(a-b)^(2)+(b-c)^(2)+(c-a)^(2)] If a+b+c=0,thena^(3)+b^(3)+c^(3)=3abc If x,y, z are different real umbers and (1)/((x-y)^(2))+(1)/((y-z)^(2))+(1)/((z-x)^(2))=((1)/(x-y)+(1)/(y-z)+(1)/(z-x))^2+lamda then the value of lamda is