Home
Class 7
MATHS
Multiply ((1)/(5) x - (1)/(4)y) and (5x^...

Multiply `((1)/(5) x - (1)/(4)y)` and `(5x^(2) - 4y^(2))`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem of multiplying the expressions \(\left(\frac{1}{5}x - \frac{1}{4}y\right)\) and \((5x^2 - 4y^2)\), we will follow these steps: ### Step 1: Distribute the first expression over the second We will use the distributive property (also known as the FOIL method for binomials) to multiply each term in the first expression by each term in the second expression. \[ \left(\frac{1}{5}x - \frac{1}{4}y\right)(5x^2 - 4y^2) = \frac{1}{5}x \cdot 5x^2 - \frac{1}{5}x \cdot 4y^2 - \frac{1}{4}y \cdot 5x^2 + \frac{1}{4}y \cdot 4y^2 \] ### Step 2: Multiply the terms Now, we will perform the multiplication for each term: 1. \(\frac{1}{5}x \cdot 5x^2\): \[ = \frac{5}{5}x^{1+2} = 1x^3 = x^3 \] 2. \(-\frac{1}{5}x \cdot 4y^2\): \[ = -\frac{4}{5}xy^2 \] 3. \(-\frac{1}{4}y \cdot 5x^2\): \[ = -\frac{5}{4}x^2y \] 4. \(\frac{1}{4}y \cdot 4y^2\): \[ = \frac{4}{4}y^{1+2} = 1y^3 = y^3 \] ### Step 3: Combine all the terms Now, we will combine all the results from the multiplications: \[ x^3 - \frac{4}{5}xy^2 - \frac{5}{4}x^2y + y^3 \] ### Final Answer Thus, the final result of multiplying the two expressions is: \[ x^3 - \frac{4}{5}xy^2 - \frac{5}{4}x^2y + y^3 \] ---
Promotional Banner

Topper's Solved these Questions

  • ALGEBRAIC EXPRESSION

    RS AGGARWAL|Exercise EXERCISE 6A|6 Videos
  • ALGEBRAIC EXPRESSION

    RS AGGARWAL|Exercise EXERCISE 6B|25 Videos
  • ALGEBRAIC EXPRESSION

    RS AGGARWAL|Exercise EXERCISE 6D|31 Videos
  • BAR GRAPHS

    RS AGGARWAL|Exercise EXERCISE 22|22 Videos

Similar Questions

Explore conceptually related problems

Multiply: (3x-(4)/(5)y^(2)x)by(1)/(2)xy

Multiply (4x+(3y)/(5)) and (3x-(4y)/(5))

Multiply (3x - (4)/(5)y^(2)x) by (1)/(2)xy .

Find each of the following products: (i) (x + 3) (x - 3) (ii) (2x + 5)(2x - 5) (ii) (8 + x)(8 - x) (iv) (7x + 11y) (7x - 11y) (v) (5x^(2) + (3)/(4) y^(2)) (5x^(2) - (3)/(4) y^(2)) (vi) ((4x)/(5) - (5y)/(3)) ((4x)/(5) + (5y)/(3)) (vii) (x + (1)/(x)) (x - (1)/(x)) (viii) ((1)/(x) + (1)/(y)) ((1)/(x) - (1)/(y)) (ix) (2a + (3)/(b)) (2a - (3)/(b))

Solve the following simultaneous equations (1)/(3x)-(1)/(4y)+1=0 and (1)/(5x)+(1)/(2y)=(4)/(15)

Multiply (i) (x-4) and (2x+3) (ii) (x-y) and (3x+5y)

Show that the lines : (i) (x -5)/(7) = (y + 2)/(-5) = (z)/(1) " " and (x)/(1) = (y)/(2) = (z)/(3) (ii) (x - 3)/(2) = (y + 1)/(-3) = (z - 2)/(4) and (x + 2)/(2) = (y - 4)/(4) = (z + 5)/(2) are perpendicular to each other .

Find each of the following products: (i) (x - 4)(x - 4) (ii) (2x - 3y)(2x - 3y) (iii) ((3)/(4) x - (5)/(6) y) ((3)/(4)x - (5)/(6) y) (iv) (x - (3)/(x)) (x - (3)/(x)) (v) ((1)/(3) x^(2) - 9) ((1)/(3) x^(2) - 9) (vi) ((1)/(2) y^(2) - (1)/(3) y) ((1)/(2) y^(2) - (1)/(3) y)

Simplify : (i) (5x - 9y) - (-7x + y) (ii) (x^(2) -x) -(1)/(2)(x - 3 + 3x^(2)) (iii) [7 - 2x + 5y - (x -y)]-(5x + 3y -7) (iv) ((1)/(3)y^(2) - (4)/(7)y + 5) - ((2)/(7)y - (2)/(3)y^(2) + 2) - ((1)/(7)y - 3 + 2y^(2))

Multiply: (2x^(2)-1)by(4x^(3)+5x^(2))(2xy+3y^(2))(3y^(2)-2)