Home
Class 7
MATHS
Multiply (5x^(2) - 6x + 9) by (2x - 3)...

Multiply `(5x^(2) - 6x + 9)` by (2x - 3)

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem of multiplying the algebraic expression \( (5x^2 - 6x + 9) \) by \( (2x - 3) \), we will follow these steps: ### Step-by-Step Solution: 1. **Distribute \( (2x - 3) \) to each term in \( (5x^2 - 6x + 9) \)**: \[ (2x - 3)(5x^2 - 6x + 9) = 2x(5x^2) + 2x(-6x) + 2x(9) - 3(5x^2) - 3(-6x) - 3(9) \] 2. **Multiply each term**: - For \( 2x \cdot 5x^2 \): \[ 2 \cdot 5 = 10 \quad \text{and} \quad x \cdot x^2 = x^{1+2} = x^3 \quad \Rightarrow \quad 10x^3 \] - For \( 2x \cdot -6x \): \[ 2 \cdot -6 = -12 \quad \text{and} \quad x \cdot x = x^{1+1} = x^2 \quad \Rightarrow \quad -12x^2 \] - For \( 2x \cdot 9 \): \[ 2 \cdot 9 = 18 \quad \Rightarrow \quad 18x \] - For \( -3 \cdot 5x^2 \): \[ -3 \cdot 5 = -15 \quad \Rightarrow \quad -15x^2 \] - For \( -3 \cdot -6x \): \[ -3 \cdot -6 = 18 \quad \Rightarrow \quad 18x \] - For \( -3 \cdot 9 \): \[ -3 \cdot 9 = -27 \] 3. **Combine all the terms**: \[ 10x^3 + (-12x^2 - 15x^2) + (18x + 18x) - 27 \] 4. **Combine like terms**: - Combine \( -12x^2 \) and \( -15x^2 \): \[ -12x^2 - 15x^2 = -27x^2 \] - Combine \( 18x \) and \( 18x \): \[ 18x + 18x = 36x \] 5. **Final expression**: \[ 10x^3 - 27x^2 + 36x - 27 \] ### Final Answer: \[ 10x^3 - 27x^2 + 36x - 27 \]
Promotional Banner

Topper's Solved these Questions

  • ALGEBRAIC EXPRESSION

    RS AGGARWAL|Exercise EXERCISE 6A|6 Videos
  • ALGEBRAIC EXPRESSION

    RS AGGARWAL|Exercise EXERCISE 6B|25 Videos
  • ALGEBRAIC EXPRESSION

    RS AGGARWAL|Exercise EXERCISE 6D|31 Videos
  • BAR GRAPHS

    RS AGGARWAL|Exercise EXERCISE 22|22 Videos

Similar Questions

Explore conceptually related problems

Multiply (5x^(2) - 8x+ 7) " with " (2x -5)

Multiply the (x ^(2) - 5x + 6) , ( 2x + 7)

Multiply (2x^(3) - 5x^(2) - x + 7) by (3 - 2x + 4x^(2))

Multiply: (2x^(2)-3x+5) by (5x+2)

Multiply (2x^(2)-4x+6y) by 3xy

Multiply: (2x^(2)-3x+5)by(5x+2)

multiply (2x^2+5) by (3x-5)