Home
Class 12
MATHS
Value of the determinant |(x,1,1),(0,1+x...

Value of the determinant `|(x,1,1),(0,1+x, 1),(-y, 1+x, 1+y)|` is (A) `xy` (B) `xy(x+2)` (C) `x(x+1)(y+1)` (D) `xy(x+1)`

Promotional Banner

Similar Questions

Explore conceptually related problems

Solution of x dy/dx+y=xe^x is (A) xy=e^x(x+1)+C (B) xy=e^x(x-1)+C (C) xy=e^x(1-x)+C (D) xy=e^y(y-1)+C

When simplified (x^(-1)+y^(-1))^(1-) is equal to xy( b) x+y( c) (xy)/(x+y) (d) (x+y)/(xy)

tan ^ (- 1) ((1) / (x + y)) + tan ^ (- 1) ((y) / (x ^ (2) + xy + 1)) = cot ^ (- 1) x

If xy = ae ^(x) + be^(-x) then xy _(2) + 2y _(1) - xy =

y = sqrt(1 + x^(2)) : y' = (xy)/(1 + x^(2))

y = sqrt(1 + x^(2)) : y' = (xy)/(1 + x^(2))

y = sqrt(1 + x^(2)) : y' = (xy)/(1 + x^(2))

What is the expression (x+y)^(-1) (x^(-1) +y^(-1)) (xy^(-1) +x^(-1)y)^(-1) equal to: