Home
Class 7
MATHS
if 2z+8/3=1/4z+5, then z=?...

if `2z+8/3=1/4z+5`, then z=?

A

`3`

B

`4`

C

`3/4`

D

`4/3`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \(2z + \frac{8}{3} = \frac{1}{4}z + 5\), we will follow these steps: ### Step 1: Move all terms involving \(z\) to one side and constant terms to the other side. We can rearrange the equation: \[ 2z - \frac{1}{4}z = 5 - \frac{8}{3} \] ### Step 2: Simplify the left side. To combine \(2z\) and \(-\frac{1}{4}z\), we need a common denominator. The common denominator for 1 and 4 is 4: \[ 2z = \frac{8}{4}z \] Now, substituting this back into the equation gives: \[ \frac{8}{4}z - \frac{1}{4}z = 5 - \frac{8}{3} \] This simplifies to: \[ \frac{7}{4}z = 5 - \frac{8}{3} \] ### Step 3: Simplify the right side. To subtract \(5\) and \(\frac{8}{3}\), we convert \(5\) into a fraction with a denominator of 3: \[ 5 = \frac{15}{3} \] Now, substituting gives: \[ \frac{7}{4}z = \frac{15}{3} - \frac{8}{3} = \frac{15 - 8}{3} = \frac{7}{3} \] ### Step 4: Solve for \(z\). Now we have: \[ \frac{7}{4}z = \frac{7}{3} \] To isolate \(z\), multiply both sides by the reciprocal of \(\frac{7}{4}\): \[ z = \frac{7}{3} \times \frac{4}{7} \] The \(7\) cancels out: \[ z = \frac{4}{3} \] ### Final Answer: Thus, the value of \(z\) is: \[ \boxed{\frac{4}{3}} \]
Promotional Banner

Topper's Solved these Questions

  • LINEAR EQUATION IN ONE VARIABLE

    RS AGGARWAL|Exercise TEST PAPER 7A|1 Videos
  • LINEAR EQUATION IN ONE VARIABLE

    RS AGGARWAL|Exercise TEST PAPER A|9 Videos
  • LINEAR EQUATION IN ONE VARIABLE

    RS AGGARWAL|Exercise EXERCISE 7 B|35 Videos
  • INTEGERS

    RS AGGARWAL|Exercise TEST PAPER-1(D)|1 Videos
  • LINES AND ANGLES

    RS AGGARWAL|Exercise Exercise 13|11 Videos

Similar Questions

Explore conceptually related problems

If z=e^((2pi i)/5) , then 1+z+z^(2)+z^(3)+5z^(4)+4z^(5)+4z^(6)+4z^(7)+4z^(8)+5z^(9)=

If 2x=3y and 4y=5z, then z:z=4:3(b)8:153:4(d)15:8

If |z_1=1,|z_2|=2,|z_3|=3 and |z_1+z_2+z_3|=1, then |9z_1z_2+4z_3z_1+z_2z_3| is equal to (A) 3 (B) 36 (C) 216 (D) 1296

If |z_1|=1, |z_2| = 2, |z_3|=3 and |9z_1 z_2 + 4z_1 z_3+ z_2 z_3|=12 , then the value of |z_1 + z_2+ z_3| is equal to

If |z_1|=1, |z_2|=2, |z_3|=3 and |9z_1z_2 + 4z_1z_3 + z_2z_3|=36 , then |z_1+z_2+z_3| is equal to :

If |z_1|=2, |z_2|=3, |z_3|=4 and |2z_1+3z_2 + 4z_3|=9 , then value of |8z_2z_3 + 27z_3z_1 + 64z_1z_2|^(1//3) is :

Let z_(1),z_(2),z_(3),z_(4) are distinct complex numbers satisfying |z|=1 and 4z_(3) = 3(z_(1) + z_(2)) , then |z_(1) - z_(2)| is equal to