Home
Class 7
MATHS
Find the product (3/5abc^2)*(-25/12a^2b^...

Find the product `(3/5abc^2)*(-25/12a^2b^2)*(-8b^2c)`.

Text Solution

AI Generated Solution

The correct Answer is:
To find the product \((\frac{3}{5}abc^2) \cdot (-\frac{25}{12}a^2b^2) \cdot (-8b^2c)\), we will follow these steps: ### Step 1: Write the expression clearly We start with the expression: \[ \left(\frac{3}{5}abc^2\right) \cdot \left(-\frac{25}{12}a^2b^2\right) \cdot \left(-8b^2c\right) \] ### Step 2: Combine the coefficients First, we will multiply the numerical coefficients: \[ \frac{3}{5} \cdot -\frac{25}{12} \cdot -8 \] ### Step 3: Simplify the coefficients Calculating step by step: 1. Multiply \(-\frac{25}{12}\) and \(-8\): \[ -\frac{25}{12} \cdot -8 = \frac{25 \cdot 8}{12} = \frac{200}{12} \] Now simplify \(\frac{200}{12}\): \[ \frac{200 \div 4}{12 \div 4} = \frac{50}{3} \] 2. Now multiply \(\frac{3}{5}\) with \(\frac{50}{3}\): \[ \frac{3}{5} \cdot \frac{50}{3} = \frac{3 \cdot 50}{5 \cdot 3} = \frac{50}{5} = 10 \] ### Step 4: Combine the variables Now we will combine the variable parts: - From \(\frac{3}{5}abc^2\), we have \(a^1, b^1, c^2\). - From \(-\frac{25}{12}a^2b^2\), we have \(a^2, b^2\). - From \(-8b^2c\), we have \(b^2, c^1\). Now we add the powers of like bases: - For \(a\): \[ a^{1+2} = a^3 \] - For \(b\): \[ b^{1+2+2} = b^5 \] - For \(c\): \[ c^{2+1} = c^3 \] ### Step 5: Combine everything Putting it all together, we have: \[ 10a^3b^5c^3 \] ### Final Answer Thus, the product is: \[ \boxed{10a^3b^5c^3} \]
Promotional Banner

Topper's Solved these Questions

  • LINEAR EQUATION IN ONE VARIABLE

    RS AGGARWAL|Exercise TEST PAPER 7B|7 Videos
  • LINEAR EQUATION IN ONE VARIABLE

    RS AGGARWAL|Exercise TEST PAPER 7C|1 Videos
  • LINEAR EQUATION IN ONE VARIABLE

    RS AGGARWAL|Exercise TEST PAPER 7A|1 Videos
  • INTEGERS

    RS AGGARWAL|Exercise TEST PAPER-1(D)|1 Videos
  • LINES AND ANGLES

    RS AGGARWAL|Exercise Exercise 13|11 Videos

Similar Questions

Explore conceptually related problems

Find the products (ab^(2)) xx(-b^(2)c)xx(-a^(2)c^(3)) xx(-3abc)

Find the product : (i) (a+2b+4c)(a^(2)+4b^(2)+16c^(2)-2ab-8bc-4ca) (ii) (3x-5y-4)(9x^(2)+25y^(2)+15xy+12x-20y+16) (iii) (2-3b-7c)(4+9b^(2)+49c^(2)+6b-21bc+14c) (iv) (sqrt(2)a+2sqrt(2)b+c)(2a^(2)+8b^(2)+c^(2)-4ab-2sqrt(2)bc-sqrt(2)ac)

Find the product (2a + 3b - 4c) (4a ^(2) + 9b ^(2) + 16 c ^(2) - 6 ab + 12 bc +8 ca)

find the product of 2a-3b+5c and -4abc

Find each of the following products (2)/(3) abc (a^(2) + b^(2) - 3c^(2))

Find each of the following products 8a^(2)(2a + 5b)

If a,b,c are real numbers such that a+b+c=0 and a^(2)+b^(2)+c^(2)=1, then (3a+5b-8c)^(2)+(-8a+3b+5c)^(2)+(5a-8b+3c)^(2) is equal to

Express each of the products as a monomials and verify the result for x=1,y=2 : ((4)/(9)abc^(3))x(-(27)/(5)a^(3)b^(2))x(-8b^(3)c)

Find the product : (i) (x+3)(x^(2)-3x+9) " " (ii) (7+5b)(49-35b+25b^(2)) (iii) (5a+(1)/(2)) (25a^(2)-(5a)/(2)+(1)/(4)) " " (iv) (a+b-2)[a^(2)+b^(2)+4(a+b)+4] .

Find the products given below and in each case verify the result for a=1,b=2 and c=3: ((4)/(9)abc^(3)) xx((-27)/(5)a^(3)b^(3))xx(-8b^(3)c)