Home
Class 7
MATHS
If A = (1)/(3)B and B = (1)/(2)C, then A...

If A = `(1)/(3)B` and `B = (1)/(2)C, then `A : B : C`?

A

`6 : 3 : 1`

B

`2 : 3 :6`

C

`3 : 2 : 6`

D

`3 : 1 : 2`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem where \( A = \frac{1}{3}B \) and \( B = \frac{1}{2}C \), we need to find the ratio \( A : B : C \). ### Step 1: Express A in terms of B Given: \[ A = \frac{1}{3}B \] ### Step 2: Express B in terms of C Given: \[ B = \frac{1}{2}C \] ### Step 3: Substitute B in the expression for A Now, substitute the expression for \( B \) into the equation for \( A \): \[ A = \frac{1}{3} \left( \frac{1}{2}C \right) \] \[ A = \frac{1}{6}C \] ### Step 4: Write the ratios Now we have: - \( A = \frac{1}{6}C \) - \( B = \frac{1}{2}C \) - \( C = C \) Now we can express the ratios: - \( A : B : C = \frac{1}{6}C : \frac{1}{2}C : C \) ### Step 5: Eliminate C from the ratios To simplify the ratio, we can divide each term by \( C \): \[ A : B : C = \frac{1}{6} : \frac{1}{2} : 1 \] ### Step 6: Find a common denominator The common denominator for \( 6 \), \( 2 \), and \( 1 \) is \( 6 \). So we can express each term with this common denominator: - \( \frac{1}{6} = 1 \) - \( \frac{1}{2} = \frac{3}{6} \) - \( 1 = \frac{6}{6} \) Thus, we can write: \[ A : B : C = 1 : 3 : 6 \] ### Final Answer The final ratio is: \[ A : B : C = 1 : 3 : 6 \] ---
Promotional Banner

Topper's Solved these Questions

  • RATION AND PROPORTION

    RS AGGARWAL|Exercise Test papers|18 Videos
  • RATION AND PROPORTION

    RS AGGARWAL|Exercise EXERCISE 8B|15 Videos
  • PROPERTIES OF TRIANGLES

    RS AGGARWAL|Exercise EXERCISE 15-D|18 Videos
  • RATIONAL NUMBERS

    RS AGGARWAL|Exercise TEST PAPER -(4)|17 Videos

Similar Questions

Explore conceptually related problems

If a : b : c =1/4:1/3:1/2 , then a/b : b/c: c/a =? यदि a : b : c =1/4:1/3:1/2 , तो a/b : b/c: c/a =?

If a :(b+c)=1:3 a n d c :(a+b)=5:7, t h e b :(a+c) is equal to 1:2 b. 1:3 c. 2:3 d. 2:1