Home
Class 7
MATHS
If 2A = 3B = 4C then A : B : C = ?...

If 2A = 3B = 4C then `A : B : C` = ?

A

`2 : 3 : 4`

B

`3 : 4 : 6`

C

`4 : 3 : 2`

D

`6 : 4 : 3`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem where \(2A = 3B = 4C\) and find the ratio \(A : B : C\), we can follow these steps: ### Step-by-Step Solution: 1. **Set a Common Variable**: Since \(2A = 3B = 4C\), we can set all of them equal to a common variable, say \(k\). \[ 2A = k, \quad 3B = k, \quad 4C = k \] 2. **Express A, B, and C in terms of k**: From the equations above, we can express \(A\), \(B\), and \(C\) in terms of \(k\): \[ A = \frac{k}{2}, \quad B = \frac{k}{3}, \quad C = \frac{k}{4} \] 3. **Find the Ratio A : B : C**: Now, we can write the ratio \(A : B : C\) as: \[ A : B : C = \frac{k}{2} : \frac{k}{3} : \frac{k}{4} \] 4. **Eliminate k**: Since \(k\) is common in all three terms, we can eliminate it: \[ A : B : C = \frac{1}{2} : \frac{1}{3} : \frac{1}{4} \] 5. **Find a Common Denominator**: To simplify this ratio, we can find a common denominator. The least common multiple of 2, 3, and 4 is 12. Therefore, we can convert each fraction: \[ A : B : C = \frac{1 \times 6}{12} : \frac{1 \times 4}{12} : \frac{1 \times 3}{12} = 6 : 4 : 3 \] 6. **Final Ratio**: Thus, the final ratio \(A : B : C\) is: \[ A : B : C = 6 : 4 : 3 \]
Promotional Banner

Topper's Solved these Questions

  • RATION AND PROPORTION

    RS AGGARWAL|Exercise EXERCISE 8C|21 Videos
  • PROPERTIES OF TRIANGLES

    RS AGGARWAL|Exercise EXERCISE 15-D|18 Videos
  • RATIONAL NUMBERS

    RS AGGARWAL|Exercise TEST PAPER -(4)|17 Videos

Similar Questions

Explore conceptually related problems

If 2 A = 3B = 4C, find A : B : C

If 2A = 3B = 4C, the find A : B C .

lf 2A= 3B = 4C,then A :B :C is (A) 2 : 3 : 4 (B) 4 : 3 : 2 (C) 6 : 4 : 3 (D) 3 : 4 : 6

If 2A = 3B and 4B = 5C, then A : C = ?

If 2A=3B=4C , the A:B:C =?

If 2A=3B and 4B=5C then A:C is

If a : b = 2 : 3 , b: c = 2 : 4, then a : b : c = ?

If (A)/(2) = (B)/(3) = (C)/(4) then A : B : C