Home
Class 8
MATHS
Arrange the following rational numbers i...

Arrange the following rational numbers in ascending order:
`(i) (4)/(-9), (-5)/(12), (7)/(-18), (-2)/(3)`
`(ii) (-3)/(4), (5)/(-12), (-7)/(16), (9)/(-24)`
`(iii) (3)/(-5), (-7)/(10), (-11)/(15), (-13)/(20)`
`(iv) (-4)/(7), (-9)/(14), (13)/(-28), (-23)/(42)`

Text Solution

AI Generated Solution

The correct Answer is:
To arrange the given rational numbers in ascending order, we will follow these steps for each part of the question. ### Part (i): Arrange `(4)/(-9), (-5)/(12), (7)/(-18), (-2)/(3)` 1. **Convert to Standard Form**: - Rewrite the numbers with a positive denominator: - \( \frac{4}{-9} = -\frac{4}{9} \) - \( \frac{-5}{12} = -\frac{5}{12} \) - \( \frac{7}{-18} = -\frac{7}{18} \) - \( \frac{-2}{3} = -\frac{2}{3} \) 2. **Find a Common Denominator**: - The denominators are \( 9, 12, 18, 3 \). The LCM of these numbers is \( 36 \). 3. **Convert Each Fraction**: - Convert each fraction to have a denominator of \( 36 \): - \( -\frac{4}{9} = -\frac{4 \times 4}{9 \times 4} = -\frac{16}{36} \) - \( -\frac{5}{12} = -\frac{5 \times 3}{12 \times 3} = -\frac{15}{36} \) - \( -\frac{7}{18} = -\frac{7 \times 2}{18 \times 2} = -\frac{14}{36} \) - \( -\frac{2}{3} = -\frac{2 \times 12}{3 \times 12} = -\frac{24}{36} \) 4. **Order the Fractions**: - Now we have: - \( -\frac{24}{36}, -\frac{16}{36}, -\frac{15}{36}, -\frac{14}{36} \) - In ascending order: - \( -\frac{24}{36}, -\frac{16}{36}, -\frac{15}{36}, -\frac{14}{36} \) 5. **Convert Back to Original Form**: - The ascending order of the original fractions is: - \( -\frac{2}{3}, -\frac{4}{9}, -\frac{5}{12}, -\frac{7}{18} \) ### Part (ii): Arrange `(-3)/(4), (5)/(-12), (-7)/(16), (9)/(-24)` 1. **Convert to Standard Form**: - Rewrite the numbers: - \( -\frac{3}{4} \) - \( \frac{5}{-12} = -\frac{5}{12} \) - \( -\frac{7}{16} \) - \( \frac{9}{-24} = -\frac{9}{24} \) 2. **Find a Common Denominator**: - The denominators are \( 4, 12, 16, 24 \). The LCM is \( 48 \). 3. **Convert Each Fraction**: - Convert to \( 48 \): - \( -\frac{3}{4} = -\frac{3 \times 12}{4 \times 12} = -\frac{36}{48} \) - \( -\frac{5}{12} = -\frac{5 \times 4}{12 \times 4} = -\frac{20}{48} \) - \( -\frac{7}{16} = -\frac{7 \times 3}{16 \times 3} = -\frac{21}{48} \) - \( -\frac{9}{24} = -\frac{9 \times 2}{24 \times 2} = -\frac{18}{48} \) 4. **Order the Fractions**: - Now we have: - \( -\frac{36}{48}, -\frac{20}{48}, -\frac{21}{48}, -\frac{18}{48} \) - In ascending order: - \( -\frac{36}{48}, -\frac{21}{48}, -\frac{20}{48}, -\frac{18}{48} \) 5. **Convert Back to Original Form**: - The ascending order of the original fractions is: - \( -\frac{3}{4}, -\frac{7}{16}, -\frac{5}{12}, -\frac{9}{24} \) ### Part (iii): Arrange `(3)/(-5), (-7)/(10), (-11)/(15), (-13)/(20)` 1. **Convert to Standard Form**: - Rewrite the numbers: - \( \frac{3}{-5} = -\frac{3}{5} \) - \( -\frac{7}{10} \) - \( -\frac{11}{15} \) - \( -\frac{13}{20} \) 2. **Find a Common Denominator**: - The denominators are \( 5, 10, 15, 20 \). The LCM is \( 60 \). 3. **Convert Each Fraction**: - Convert to \( 60 \): - \( -\frac{3}{5} = -\frac{3 \times 12}{5 \times 12} = -\frac{36}{60} \) - \( -\frac{7}{10} = -\frac{7 \times 6}{10 \times 6} = -\frac{42}{60} \) - \( -\frac{11}{15} = -\frac{11 \times 4}{15 \times 4} = -\frac{44}{60} \) - \( -\frac{13}{20} = -\frac{13 \times 3}{20 \times 3} = -\frac{39}{60} \) 4. **Order the Fractions**: - Now we have: - \( -\frac{36}{60}, -\frac{42}{60}, -\frac{44}{60}, -\frac{39}{60} \) - In ascending order: - \( -\frac{44}{60}, -\frac{42}{60}, -\frac{39}{60}, -\frac{36}{60} \) 5. **Convert Back to Original Form**: - The ascending order of the original fractions is: - \( -\frac{11}{15}, -\frac{7}{10}, -\frac{13}{20}, -\frac{3}{5} \) ### Part (iv): Arrange `(-4)/(7), (-9)/(14), (13)/(-28), (-23)/(42)` 1. **Convert to Standard Form**: - Rewrite the numbers: - \( -\frac{4}{7} \) - \( -\frac{9}{14} \) - \( \frac{13}{-28} = -\frac{13}{28} \) - \( -\frac{23}{42} \) 2. **Find a Common Denominator**: - The denominators are \( 7, 14, 28, 42 \). The LCM is \( 84 \). 3. **Convert Each Fraction**: - Convert to \( 84 \): - \( -\frac{4}{7} = -\frac{4 \times 12}{7 \times 12} = -\frac{48}{84} \) - \( -\frac{9}{14} = -\frac{9 \times 6}{14 \times 6} = -\frac{54}{84} \) - \( -\frac{13}{28} = -\frac{13 \times 3}{28 \times 3} = -\frac{39}{84} \) - \( -\frac{23}{42} = -\frac{23 \times 2}{42 \times 2} = -\frac{46}{84} \) 4. **Order the Fractions**: - Now we have: - \( -\frac{48}{84}, -\frac{54}{84}, -\frac{39}{84}, -\frac{46}{84} \) - In ascending order: - \( -\frac{54}{84}, -\frac{48}{84}, -\frac{46}{84}, -\frac{39}{84} \) 5. **Convert Back to Original Form**: - The ascending order of the original fractions is: - \( -\frac{9}{14}, -\frac{4}{7}, -\frac{23}{42}, -\frac{13}{28} \) ### Final Answers: - Part (i): \( -\frac{2}{3}, -\frac{4}{9}, -\frac{5}{12}, -\frac{7}{18} \) - Part (ii): \( -\frac{3}{4}, -\frac{7}{16}, -\frac{5}{12}, -\frac{9}{24} \) - Part (iii): \( -\frac{11}{15}, -\frac{7}{10}, -\frac{13}{20}, -\frac{3}{5} \) - Part (iv): \( -\frac{9}{14}, -\frac{4}{7}, -\frac{23}{42}, -\frac{13}{28} \)
Promotional Banner

Topper's Solved these Questions

  • RATIONAL NUMBERS

    RS AGGARWAL|Exercise EXERCISE 1B|3 Videos
  • RATIONAL NUMBERS

    RS AGGARWAL|Exercise EXERCISE 1C|14 Videos
  • RATIONAL NUMBERS

    RS AGGARWAL|Exercise SOLVED EXAMPLES|19 Videos
  • QUADRILATERALS

    RS AGGARWAL|Exercise EXERCISE 15|8 Videos
  • SQUARES

    RS AGGARWAL|Exercise TEST PAPER-3|15 Videos

Similar Questions

Explore conceptually related problems

Arrange the following rational numbers in descending order: 4/9,\ (-5)/6,\ (-7)/(-12),(11)/(-24)

Arrange the following rational numbers in ascending order. 3/7, 4/5, -5/21, 2/15

Arrange the following rational numbers in descending order: (i)7/8,(64)/(16),(36)/(-12),5/(-4),(140)/(28) (ii) (-3)/(10),(17)/(-30),7/(-15),\ (-11)/(20)

Arrange the following rational numbers in ascending order: (i)3/5,(-17)/(-30),8/(-15),(-7)/(10) (ii) (-4)/9,5/(-12),7/(-18),2/(-3)

Arrange the rational numbers in ascending order. (2)/(3),(3)/(4),(5)/(6), (-7)/(12)

Write the following rational numbers in ascending order: (i) (-3)/(5),(-2)/(5),(-1)/(5) (ii) (-1)/(3),(-2)/(9),(-4)/(3)( iii) (-3)/(7),(-3)/(2),(-3)/(4)

Arrange the following fractions in ascending order: (i) 3/4, 5/6, 7/9, 11/12 (ii) 4/5, 7/10, 11/15, 17/20

Arrange the following fractions in descending order: 4/5,7/(10),(11)/(15),(17)/(20) (ii) 2/7,(11)/(35),9/(14),(13)/(28)