Home
Class 8
MATHS
Verify whether the given statement is tr...

Verify whether the given statement is true or false:
(i) `(13)/(5) divide (26)/(10) = (26)/(10) divide (13)/(5)`
(ii) `-9 divide (3)/(4)=(3)/(4) divide (-9)`
(iii) `(-8)/(9) divide (-4)/(3)=(-4)/(3) divide (-8)/(9)`
(iv) `(-7)/(24) divide (3)/(-16) = (3)/(-16) divide (-7)/(24)`

Text Solution

AI Generated Solution

The correct Answer is:
Let's verify each of the statements step by step. ### (i) Verify if \( \frac{13}{5} \div \frac{26}{10} = \frac{26}{10} \div \frac{13}{5} \) 1. **Calculate \( \frac{13}{5} \div \frac{26}{10} \)**: - Dividing by a fraction is the same as multiplying by its reciprocal. - So, \( \frac{13}{5} \div \frac{26}{10} = \frac{13}{5} \times \frac{10}{26} \). - Simplifying \( \frac{10}{26} = \frac{5}{13} \). - Therefore, \( \frac{13}{5} \times \frac{5}{13} = 1 \). 2. **Calculate \( \frac{26}{10} \div \frac{13}{5} \)**: - Similarly, \( \frac{26}{10} \div \frac{13}{5} = \frac{26}{10} \times \frac{5}{13} \). - Simplifying \( \frac{26}{10} = \frac{13}{5} \). - Therefore, \( \frac{13}{5} \times \frac{5}{13} = 1 \). 3. **Conclusion**: - Since both sides equal 1, the statement is **True**. ### (ii) Verify if \( -9 \div \frac{3}{4} = \frac{3}{4} \div -9 \) 1. **Calculate \( -9 \div \frac{3}{4} \)**: - This is the same as \( -9 \times \frac{4}{3} = -\frac{36}{3} = -12 \). 2. **Calculate \( \frac{3}{4} \div -9 \)**: - This is the same as \( \frac{3}{4} \times \frac{-1}{9} = -\frac{3}{36} = -\frac{1}{12} \). 3. **Conclusion**: - Since \( -12 \neq -\frac{1}{12} \), the statement is **False**. ### (iii) Verify if \( \frac{-8}{9} \div \frac{-4}{3} = \frac{-4}{3} \div \frac{-8}{9} \) 1. **Calculate \( \frac{-8}{9} \div \frac{-4}{3} \)**: - This is the same as \( \frac{-8}{9} \times \frac{3}{-4} = \frac{8 \times 3}{9 \times 4} = \frac{24}{36} = \frac{2}{3} \). 2. **Calculate \( \frac{-4}{3} \div \frac{-8}{9} \)**: - This is the same as \( \frac{-4}{3} \times \frac{9}{-8} = \frac{4 \times 9}{3 \times 8} = \frac{36}{24} = \frac{3}{2} \). 3. **Conclusion**: - Since \( \frac{2}{3} \neq \frac{3}{2} \), the statement is **False**. ### (iv) Verify if \( \frac{-7}{24} \div \frac{3}{-16} = \frac{3}{-16} \div \frac{-7}{24} \) 1. **Calculate \( \frac{-7}{24} \div \frac{3}{-16} \)**: - This is the same as \( \frac{-7}{24} \times \frac{-16}{3} = \frac{7 \times 16}{24 \times 3} = \frac{112}{72} = \frac{14}{9} \). 2. **Calculate \( \frac{3}{-16} \div \frac{-7}{24} \)**: - This is the same as \( \frac{3}{-16} \times \frac{24}{-7} = \frac{3 \times 24}{16 \times 7} = \frac{72}{112} = \frac{9}{14} \). 3. **Conclusion**: - Since \( \frac{14}{9} \neq \frac{9}{14} \), the statement is **False**. ### Summary of Results: - (i) True - (ii) False - (iii) False - (iv) False
Promotional Banner

Topper's Solved these Questions

  • RATIONAL NUMBERS

    RS AGGARWAL|Exercise EXERCISE 1F|8 Videos
  • RATIONAL NUMBERS

    RS AGGARWAL|Exercise EXERCISE 1G|20 Videos
  • RATIONAL NUMBERS

    RS AGGARWAL|Exercise EXERCISE 1D|9 Videos
  • QUADRILATERALS

    RS AGGARWAL|Exercise EXERCISE 15|8 Videos
  • SQUARES

    RS AGGARWAL|Exercise TEST PAPER-3|15 Videos

Similar Questions

Explore conceptually related problems

(4)/(9) divide ?= (-8)/(15)

Verify whether the given statement is true or false: ((5)/(9) divide (1)/(3)) divide (5)/(2)=(5)/(9) divide ((1)/(3) divide (5)/(2))

((-5)/(9) divide (2)/(3))=?

Divide: (9)/(16) by (5)/(8)

Simplify: {:((i)(4)/(9) divide (-5)/(12),(ii) -8 divide (-7)/(16),(iii) (-12)/(7) divide (-18)),((iv)(-1)/(10) divide (-8)/(5), (v) (-16)/(35) divide (-15)/(14), (vi) (-65)/(14) divide (13)/(7)):}

Simplify : (i) (4)/(9)divide((-5)/(12)) (ii) -8divide((-5)/(16)) (iii) (-12)/(7)divide (-18) (iv) ((-1)/(10))divide((-8)/(5)) (v) ((-16)/(35))divide ((-15)/(14)) (vi) ((-65)/(14))divide((13)/(-7))

Divide :(3)/(5)by(4)/(25) (ii) (-8)/(9)by(4)/(3)(-16)/(21)by(-4)/(3) (iv) (8)/(13)by(3)/(-26)

Divide: (-16)/(21)\ b y4/3 (ii) (-8)/(13)\ b y3/(-26)

Divide (i) 3 by 8 (ii) 3 by 80