Home
Class 8
MATHS
((-5)/(4))^(-1)=?...

`((-5)/(4))^(-1)=?`

A

`(4)/(5)`

B

`(-4)/(5) `

C

`(5)/(4)`

D

`(3)/(5)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \(\left(-\frac{5}{4}\right)^{-1}\), we can follow these steps: ### Step 1: Understand the Negative Exponent The negative exponent indicates that we need to take the reciprocal of the base. In this case, the base is \(-\frac{5}{4}\). ### Step 2: Write the Reciprocal Taking the reciprocal of \(-\frac{5}{4}\) means we flip the fraction. The reciprocal of \(-\frac{5}{4}\) is \(-\frac{4}{5}\). ### Step 3: Write the Final Answer Thus, we can conclude that: \[ \left(-\frac{5}{4}\right)^{-1} = -\frac{4}{5} \] ### Final Answer: \(-\frac{4}{5}\) ---
Promotional Banner

Topper's Solved these Questions

  • RATIONAL NUMBERS

    RS AGGARWAL|Exercise EXERCISE 1H|23 Videos
  • QUADRILATERALS

    RS AGGARWAL|Exercise EXERCISE 15|8 Videos
  • SQUARES

    RS AGGARWAL|Exercise TEST PAPER-3|15 Videos

Similar Questions

Explore conceptually related problems

Prove that: sin^(-1)(-(4)/(5))=tan^(-1)(-(4)/(3))=co^(-1)(-(3)/(5))-pi

The value of (33)/(40)+(1)/(5)[(4)/(5)-(1)/(5)xx((7)/(8)-(5)/(4))] is :

4(4)/(5)-:{2(1)/(5)-(1)/(2)(1(1)/(4)-(1)/(4)-(1)/(5))}

2xx13(3)/(4)xx5(1)/(4)+5(1)/(4)xx5(1)/(4)+13(3)/(4)xx13(3)/(4)=? (a) 311(b)316(c)361(d)380

What is the value of "sin"^(-1)(4)/(5)+"sec"^(-1)(5)/(4)-(pi)/(2) ?

Prove that cos^(-1)((4)/(5))=tan^(-1)((3)/(4))

(3)/(4)+(5)/(6)+(-1)/(4)+(-7)/(6)

(1)/((4^(-5))^((1)/(3)))

The value of int(dx)/(x^((1)/(5))(1+x^((4)/(5)))^((1)/(2))) is