To evaluate the expression \( \sqrt[3]{216 \times (-343)} \), we can follow these steps:
### Step 1: Break down the numbers
First, we need to express 216 and -343 in terms of their cube roots.
- \( 216 = 6^3 \) because \( 6 \times 6 \times 6 = 216 \).
- \( -343 = (-7)^3 \) because \( -7 \times -7 \times -7 = -343 \).
### Step 2: Rewrite the expression
Now we can rewrite the original expression using these identities:
\[
\sqrt[3]{216 \times (-343)} = \sqrt[3]{6^3 \times (-7)^3}
\]
### Step 3: Apply the property of cube roots
Using the property of cube roots, we can separate the cube roots:
\[
\sqrt[3]{6^3 \times (-7)^3} = \sqrt[3]{6^3} \times \sqrt[3]{(-7)^3}
\]
### Step 4: Simplify the cube roots
Now we can simplify each cube root:
\[
\sqrt[3]{6^3} = 6 \quad \text{and} \quad \sqrt[3]{(-7)^3} = -7
\]
### Step 5: Multiply the results
Now we multiply the results from the previous step:
\[
6 \times (-7) = -42
\]
### Final Answer
Thus, the value of \( \sqrt[3]{216 \times (-343)} \) is:
\[
\boxed{-42}
\]
---
Topper's Solved these Questions
CUBES AND CUBE ROOTS
RS AGGARWAL|Exercise Exercise 4A|10 Videos
CUBES AND CUBE ROOTS
RS AGGARWAL|Exercise Exercise 4B|4 Videos
CONSTRUCTION OF QUADRILATERALS
RS AGGARWAL|Exercise Test Paper-17 (E)|1 Videos
DATA HANDLING
RS AGGARWAL|Exercise Exercise 21C|11 Videos
Similar Questions
Explore conceptually related problems
Evaluate root3(64 xx 729)
Evaluate root3(343)
root3(216 xx 64)=?
Evaluate root3(125 xx 64) .
Evaluate root3((-512)/(343))
Evaluate root3((-64)/(343))
Evaluate : root3(15625 xx 216)/root3(3375)
Evaluate : root3(57(132)/343)
Evaluate root3((125)/(216))
Evaluate (i) root3((343)^(-2)) (ii) root3((32)^(-3))
RS AGGARWAL-CUBES AND CUBE ROOTS-Test Paper-4 (Fill in the blanks)