Home
Class 11
MATHS
Evaluate: ("lim")(xvec0)(tanx)/x where ...

Evaluate: `("lim")_(xvec0)(tanx)/x` where `[dot]` represents the greatest integer function

Promotional Banner

Similar Questions

Explore conceptually related problems

Evaluate: [(lim)_(x rarr0)(tan^(-1)x)/(x)], where [ lrepresent the greatest integer function

Evaluate : [lim_(x to 0) (sin x)/(x)] , where [*] represents the greatest integer function.

Evaluate: lim_(x rarr0)(sin x)/(x), where [.] represents the greatest integer function.

Prove that [lim_(xto0) (sinx)/(x)]=0, where [.] represents the greatest integer function.

The value of lim_(xrarr0)[(x)/(sinx)] , where [.] represents the greatest integer function,is

lim_(x rarr0)(tan^(2)[x])/([x]^(2)), where [] represents greatest integer function,is

("lim")_(xvec0)[(sin(sgn(x)))/((sgn(x)))], where[dot] denotes the greatest integer function, is equal to 0 (b) 1 (c) -1 (d) does not exist

If a>0lim_(x rarr oo)([ax+b])/(x) is where [.] represents the Greatest integer function

Let f(x)={cos[x],xgeq0|x|+a ,x<0 The find the value of a , so that ("lim")_(xvec0) f(x) exists, where [x] denotes the greatest integer function less than or equal to x .

Evaluate: int_(0)^(100)x-[x]dx where [.] represents the greatest integer function).