Home
Class 11
MATHS
If lim(n->oo)1/((sin^(-1)x)^("n")+1)=1 ...

If `lim_(n->oo)1/((sin^(-1)x)^("n")+1)=1` `,t h e n` find the value of x.

Promotional Banner

Similar Questions

Explore conceptually related problems

lim_(n rarr oo)(1)/((sin^(-1)x)^(n)+1)=1 then find the

lim_(n rarr oo)(1+(x)/(n))^(n)

If the value of lim_(n->oo){1/(n+1)+1/(n+2)+.......+1/(6n)} is 'K' then find value of (K - log_e 6)? .

If f(n)=int_(0)^(2015)(e^(x))/(1+x^(n))dx , then find the value of lim_(nto oo)f(n)

If lim_(xto oo)(n.3^(n))/(n.(x-1)^(n)+n.3^(n+1)-3^(n))=1/3 , the number of the integral values of x is ………..

If lim_(x->1)((x^n-1)/(n(x-1)))^(1/(x-1))=e^p , then p is equal to

Let f(x)=(lim)_(n->oo)(2x^(2n)sin1/x+x)/(1+x^(2n))\ then find :\ (lim)_(x->-oo)f(x)

lim_ (n rarr oo) (1) / (1 + x ^ (n))

lim_(xrarr oo)(1+sin.(1)/(n))^n equals

let f(x)=lim_(n rarr oo)(x^(2n)-1)/(x^(2n)+1)