Home
Class 12
MATHS
L e tA=int0^oo(logx)/(1+x^3)dx Then find...

`L e tA=int_0^oo(logx)/(1+x^3)dx` Then find the value of `int_0^oo(xlogx)/(1+x^3)dx` in terms of `A`

Promotional Banner

Similar Questions

Explore conceptually related problems

Let A=int_(0)^(oo)(log x)/(1+x^(3))dx Then find the value of int_(0)^(oo)(x log x)/(1+x^(3))dx in terms of A

L e tA=int_0^oo(logx)/(1+x^3)dxdotT h e nfin dt h ev a l u eofint_0^oo(xlogx)/(1+x^3)dx in terms of Adot

The value of int_0^oo (dx)/(1+x^4) is

The value of int_0^oo (dx)/(1+x^4) is

The value of int_(0)^(oo) (logx)/(1+x^(2))dx , is

The value of int_(0)^(oo) (logx)/(1+x^(2))dx , is

Find the value of int_(0)^(oo)(xlogx)/((1+x^(2))^(2))dx .

int_(0)^(oo)(logx)/(1+x^(2))dx=

The value of int_(0)^(oo)(logx)/(a^(2)+x^(2))dx is

The value of int_(0)^(oo)(logx)/(a^(2)+x^(2))dx is