Home
Class 12
MATHS
92sin^(-1)x+sin^(-1)sqrt(1-x^(2))...

92sin^(-1)x+sin^(-1)sqrt(1-x^(2))

Promotional Banner

Similar Questions

Explore conceptually related problems

If sin^(-1)x+sin^(-1)(1-x)=sin^(-1)sqrt(1-x^(2)), then x is equal to

Prove that 2sin^(-1)x=sin^(-1)[2x sqrt(1-x^(2))]

(sin^(-1)x)/(sqrt(1-x^(2))

(sin^(-1)x)/(sqrt(1-x^(2))

sin^(-1)[sqrt(x^(2)-x^(3))-sqrt(x-x^(3))]=..... a) sin^(-1)x+sin^(-1)sqrt(x) b) sin^(-1)x-sin^(-1)sqrt(x) c) sin^(-1)sqrt(x)-sin^(-1)x d) 2sin^(-1)x

Solve: sin^-1 (x)+ sin (sqrt(1-x^2))=

Prove that, 2 sin^(-1)x = sin^(-1) (2x sqrt (1-x^2))

sin^(-1)x+sin^(-1)y=cos^(-1)""{sqrt((1-x^(2))(1-y^(2)))-xy}

Prove the following: sin^-1x-sin^-1y = sin^-1[x(sqrt(1-y^2))-y(sqrt(1-x^2))]

Prove that : 2 sin^-1 x = sin^-1 (2x sqrt(1-x^2)), |x| le (1/(sqrt2)