Home
Class 12
MATHS
tan^(-1)(1-x)/(1+x)=(1)/(2)sin^(-1)(x)/(...

tan^(-1)(1-x)/(1+x)=(1)/(2)sin^(-1)(x)/(sqrt(1+x^(2)))

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that tan^(-1)((1-x)/(1+x))-tan^(-1)((1-y)/(1+y))=sin^(-1)((y-x)/(sqrt(1+x^(2))*sqrt(1+y^(2))))

Prove the following "tan"^(-1)((1-x)/(1+x))-"tan"^(-1)((1-y)/(1+y))="sin"^(-1)((y-x)/(sqrt(1+x^(2))sqrt(1+y^(2)))) .

tan^(-1)sqrt((1-x)/(1+x))+sin^(-1)2x sqrt(1-x^(2))=(5 pi)/(12) if x=

int (tan (sin^(-1)x))/(sqrt(1-x^(2)))dx=

solve : tan^(-1) sqrt(x(x+1))+sin ^(-1) (sqrt(1+x+x^(2)))=(pi)/(2)

tan ^(-1)x-tan ^(-1)y=sin ^(-1) ""(x-y)/(sqrt((1+x^(2))(1+y^(2)))

Express sin^(-1)x in terms of (i) cos^(-1)sqrt(1-x^(2)) (ii) "tan"^(-1)x/(sqrt(1-x^(2))) (iii) "cot"^(-1)(sqrt(1-x^(2)))/x

Express sin^(-1)x in terms of (i) cos^(-1)sqrt(1-x^(2)) (ii) "tan"^(-1)x/(sqrt(1-x^(2))) (iii) "cot"^(-1)(sqrt(1-x^(2)))/x

Prove that sin^(-1)((x)/(sqrt(1+x^(2))))+cos^(-1)((x+1)/(sqrt(x^(2)+2x+2)))=tan^(-1)(x^(2)+x+1)

Find (dy)/(dx) when : y="sin"^(-1) (1)/(sqrt(1+x^(2)))+tan^(-1) ( (sqrt(1+x^(2))-1)/(x))