Home
Class 12
MATHS
int(-1)^(3)tan^(-1)(x^(1))/(x^(2)+1)+tan...

int_(-1)^(3)tan^(-1)(x^(1))/(x^(2)+1)+tan^(-1)(x^(2)+1)/(x)dx=

Promotional Banner

Similar Questions

Explore conceptually related problems

The vlaue of the integral int_(-1)^(3) ("tan"^(1)(x)/(x^(2)+1)+"tan"^(-1)(x^(2)+1)/(x))dx is equal to

The value of int_(0)^(4)[tan^(-1)((x)/(x^(2)+1))+tan^(-1)((x^(2)+1)/(x))]dx is

int_(-1)^(3)(Tan^(-1)""(x)/((x^(2)+1))+Tan^(-1)""(x^(2)+1)/(x))dx=

Evaluate: int_(-1)^3(tan^(-1)(x/(x^2+1))+tan^(-1)((x^2+1)/x))dx

int_(-1)^(3)[tan^(-1).(x)/(x^(2)+1)+cot^(-1).(x)/(x^(2)+1)]dx

Evaluate int_-1^3[tan^(-1) (x/(x^2 + 1)) + tan^(-1) ((x^2 +1 )/x)]dx .

int_(0)^(1)(tan^(-1)x)/(1+x^(2))dx

int_(0)^(1)tan^(-1)(1-x+x^(2))dx

int_(0)^(x)tan^(-1)(1-x+x^(2))dx