Home
Class 11
MATHS
Evaluate: ("lim")(xvec0)(log(5+x)-"log"...

Evaluate: `("lim")_(xvec0)(log(5+x)-"log"(5-x))/x`

Text Solution

AI Generated Solution

To evaluate the limit \[ \lim_{x \to 0} \frac{\log(5+x) - \log(5-x)}{x}, \] we start by recognizing that as \( x \) approaches 0, both \( \log(5+x) \) and \( \log(5-x) \) approach \( \log(5) \). This gives us the indeterminate form \( \frac{0}{0} \). To resolve this, we can use properties of logarithms. ...
Promotional Banner

Similar Questions

Explore conceptually related problems

lim_(x rarr0)(log(a+x)-log(a-x))/(x)

Evaluate lim_(xto0)(log(5+x)-log(5-x))/x

"lim_(x rarr0)[(log(2+x)-log(2-x))/(x)]

If lim_(x rarr0)(log(3+x)-log(3-x))/(x)=

lim_(x rarr0)((log(4-x)-log(4+x))/(x))

Evaluate: (lim)_(x rarr e)(log x-1)/(x-e)

The value of ("lim")_(xvec0)(e^(2x)-cos x-"ln"(1+2x))/(xtanx-sinx)i s 0 (b) 1 (c) 2 (d) 3

lim_(x rarr0)[(log(1+7x)-log(1+3x))/(x)]

lim(x rarr0)(log(2+x)+log(0.5))/(x)

Evaluate: lim_(x rarr0)(log cos x)/(x)