Home
Class 12
MATHS
" 30."f(x)=x^(4)-8x^(3)+22x^(2)-24x+21...

" 30."f(x)=x^(4)-8x^(3)+22x^(2)-24x+21

Promotional Banner

Similar Questions

Explore conceptually related problems

Determine the intervals in which the function f(x)=x^(4)-8x^(3)+22x^(2)-24x+21 is decreasing or increasing.

Determine the intervals in which the function f(x)=x^(4)-8x^(3)+22x^(2)-24x+21 is decreasing or increasing.

Statement 1: The function f(x)=x^(4)-8x^(3)+22x^(2)-24x+21 is decreasing for every x in(-oo,1)uu(2,3) Statement 2:f(x) is increasing for x in(1,2)uu(3,oo) and has no point of inflection.

Using the first derivative , find the extreme of the following functions : f(x) =x^(4)-8x^(3)+22x^(2)-24x +12,

Examine for maxima and minima of the function f(x)=x^(4)-8x^(3)+22x^(2)-24x+8 .

For f:R rarr R, f(x)=x^(4)-8x^(3)+22x^(2)-24x , the sum of all local extreme value of f(x) is equal to

Let f:R rarrR, f(x)=x^(4)-8x^(3)+22x^(2)-24x+c . If sum of all extremum value of f(x) is 1, then c is equal to

For f:R rarr R, f(x)=x^(4)-8x^(3)+22x^(2)-24x , the sum of all local extreme value of f(x) is equal to

Let f:R rarrR, f(x)=x^(4)-8x^(3)+22x^(2)-24x+c . If sum of all extremum value of f(x) is 1, then c is equal to