Home
Class 11
MATHS
Column I ([.] denotes the greatest in...

Column I ([.] denotes the greatest integer function), Column II `""("lim")_(xvec0)([100(sinx)/x]+[100(tanx)/x])` , p. 198 `("lim")_(xvec0)([100 x/(sinx)]+[100(tanx)/x])` , q. 199 `("lim")_(xvec0)([100(sin^(-1)x)/x]+[100(tan^(-1)x)/x])` , r. 200 `("lim")_(xvec0)([100 x/(sin^(-1)x)]+[100(tan^(-1)x)/x])` , s. 201

Promotional Banner

Similar Questions

Explore conceptually related problems

(lim)_(x->0)([100 x/(sin^(-1)x)]+[100(tan^(-1)x)/x])=

(lim)_(x->0)([100(sin x)/x]+[100(tanx)/x])=

(lim)_(x->0)([100(sin^(-1)\ x)/x]+[100(tan^(-1)x)/x])=

(lim)_(x->0)([100 x/(sin\ x)]+[100(tanx)/x])=

If [.] denotes the greatest integer function, then lim_(xrarr0) [(x^2)/(tanx sin x)] , is

lim_(x rarr0)[(100tan x*sin x)/(x^(2))]

If n is a non zero integer and [*] denotes the greatest integer function then lim_(x rarr0)[(n(sin x)/(x)]+lim_(x rarr)[n(tan x)/(x)] equals

If f(x)=x((e^(|x|+[x])-2)/(|x|+[x])) then (where [.] represents the greatest integer function) (lim)_(xvec0^+)f(x)=-1 b. (lim)_(xvec0^-)f(x)=0 c. (lim)_(xvec0^)f(x)=-1 d. (lim)_(xvec0^)f(x)=0

lim_(x to 0) (x^3 sin(1/x))/sinx

Which of the following limits tends to unity? (a) ("lim")_(xvec0)sin(tanx)/(sinx) (b) ("lim")_(xvecpi/2)sin(cosx)/(cosx) ("lim")_(xvec0)"sin"(e^x-1)/x (d) ("lim")_(xvec0)(sqrt(1+x)-sqrt(1-x))/x