Home
Class 11
MATHS
x|-|x-2|=2...

x|-|x-2|=2

Promotional Banner

Similar Questions

Explore conceptually related problems

The function f(x)=2|x|+|x+2|-||x+2|-2|x|| has a local maximum at ……… and local minimum ………..

Solve the following: |x-2|=(x-2) |x+2|=-x-3 |x^2-x|=x^2-x |x^2-x-2|=2+x-x^2

Solve the following: |x-2|=(x-2) , |x+2|=-x-3 , |x^2-x|=x^2-x , |x^2-x-2|=2+x-x^2

Prove the identity ((x+|x|)/2)^(2)+((x-|x|)/(2))^(2) =x^(2)

Solve for x: (x^2-2x)/(x-2)=2 Verify your answer

Solve the following : (i) |x-2|=(x-2) " (ii) " |x+3| = -x-3 (iii) |x^(2)-x|=x^(2)-x " (iv) " |x^(2)-x-2| =2+x-x^(2)

Solve the following : (i) |x-2|=(x-2) " (ii) " |x+3| = -x-3 (iii) |x^(2)-x|=x^(2)-x " (iv) " |x^(2)-x-2| =2+x-x^(2)

Solve the following : (i) |x-2|=(x-2) " (ii) " |x+3| = -x-3 (iii) |x^(2)-x|=x^(2)-x " (iv) " |x^(2)-x-2| =2+x-x^(2)

Solve the following : (i) |x-2|=(2-x) " (ii) " |x+3| = -x-3 (iii) |x^(2)-x|=x^(2)-x " (iv) " |x^(2)-x-2| =2+x-x^(2)