Home
Class 11
MATHS
Evaluate : ("lim")(xrarr2^+) ([x-2])/("...

Evaluate : `("lim")_(xrarr2^+)` `([x-2])/("log"(x-2))` , where [.] represents the greatest integer function.

Promotional Banner

Similar Questions

Explore conceptually related problems

lim_(xrarr pi//2)([x/2])/(log_e(sinx)) (where [.] denotes the greatest integer function)

Evaluate: lim (tan x)/(x) where [.] represents the greatest integer function

If a>0lim_(x rarr oo)([ax+b])/(x) is where [.] represents the Greatest integer function

Evaluate: lim_(x rarr0)(sin x)/(x), where [.] represents the greatest integer function.

The value of lim_(xrarr0)[(x)/(sinx)] , where [.] represents the greatest integer function,is

lim_(x rarr0)(tan^(2)[x])/([x]^(2)), where [] represents greatest integer function,is

lim_(x rarr0)|x(x-1)|^([cos2x]), where [^(*)] represents the greatest integer function,is equal to

lim_(x rarr1)[csc(pi x)/(2)]^((1)/((1-x))) (where [.] represents the greatest integer function) is equal to

Evaluate the following limits using sandwich theorem: lim_(x rarr oo)([x])/(x), where [.] represents greatest integer function.

lim_(xrarr1^(+))(log_(sqrt2)sqrt2x)^(1/({x})) where [ ] represents greatest integer function is