Home
Class 12
MATHS
(d^2y)/(dx^2)=1/(1+x^2), when x=0, y=0an...

`(d^2y)/(dx^2)=1/(1+x^2),` when `x=0, y=0and(dy)/(dx)=0`

Promotional Banner

Similar Questions

Explore conceptually related problems

(d^(2)y)/(dx^(2))=(1)/(1+x^(2)) whenx =0,y=0 and (dy)/(dx)=0

The solution of the equation x^(2)(d^(2)y)/(dx^(2))=log x when x=1,y=0 and (dy)/(dx)=-1 is

(d^(2)y)/(dx^(2))=x^(2)sin x, givenatx =0 if y=0,(dy)/(dx)=1

Solve the differential equation (d^2y)/(dx^2)=x+sinx given that when x=0, y=0, and (dy)/(dx)=-1 .

Find the solution of (d^2y)/(dx^2) =3x^2 + 1 given that y = 2 and (dy)/(dx) = 4 when x = 0.

Solve the differential equation (dy)/(dx)=1+x+y^(2)+xy^(2) , when y=0 and x=0.

Solve the differential equation (dy)/(dx)=1+x+y^(2)+xy^(2) , when y=0 and x=0.

Solve: (d^2y)/dx^2=x+sinx , given that y=0 and (dy)/(dx)=-1 when x=0

Solve: (d^2y)/dx^2=x+sinx , given that y=0 and (dy)/(dx)=-1 when x=0