Home
Class 12
MATHS
(d^2y)/(dx^2)=xsinx...

`(d^2y)/(dx^2)=xsinx`

Promotional Banner

Similar Questions

Explore conceptually related problems

The degree of the differential equation ((d^2y)/(dx^2))^5+((dy)/(dx))^3=xsinx((dy)/(dx)) is

IF y=xsinx, prove that, x^2(d^2y)/(dx^2)-2xdy/dx+(2+x^2)y=0

The function u=e^xsinx and v=e^xcosx . The value of (d^2u)/(dx^2) is-

The function u=e^xsinx and v=e^xcosx . The value of (d^2v)/(dx^2) is-

If x=logp and y=1/p ,then (a) (d^2y)/(dx^2)-2p=0 (b) (d^2y)/(dx^2)+y=0 (c) (d^2y)/(dx^2)+(dy)/(dx)=0 (d) (d^2y)/(dx^2)-(dy)/(dx)=0

If x=logp and y=1/p ,then (a) (d^2y)/(dx^2)-2p=0 (b) (d^2y)/(dx^2)+y=0 (c) (d^2y)/(dx^2)+(dy)/(dx)=0 (d) (d^2y)/(dx^2)-(dy)/(dx)=0

If x=logp and y=1/p ,then (a) (d^2y)/(dx^2)-2p=0 (b) (d^2y)/(dx^2)+y=0 (c) (d^2y)/(dx^2)+(dy)/(dx)=0 (d) (d^2y)/(dx^2)-(dy)/(dx)=0

If x=log pandy=(1)/(p), then (a) (d^(2)y)/(dx^(2))-2p=0 (b) (d^(2)y)/(dx^(2))+y=0 (c) (d^(2)y)/(dx^(2))+(dy)/(dx)=0( d) (d^(2)y)/(dx^(2))-(dy)/(dx)=0

Solve the differential equation: xcosx(dy)/(dx)+y(xsinx+cosx)=1 , 0