Home
Class 12
MATHS
(d^2y)/(dx^2)=x^2sinx ,g i v e n a tx=0i...

`(d^2y)/(dx^2)=x^2sinx ,g i v e n a tx=0ify=0,(dy)/(dx)=1`

Promotional Banner

Similar Questions

Explore conceptually related problems

Solve the differential equation (d^2y)/(dx^2)=x+sinx given that when x=0, y=0, and (dy)/(dx)=-1 .

Solve: (d^2y)/dx^2=x+sinx , given that y=0 and (dy)/(dx)=-1 when x=0

Solve: (d^2y)/dx^2=x+sinx , given that y=0 and (dy)/(dx)=-1 when x=0

Solve: (d^2y)/dx^2=e^x(sinx+cosx) , given that y=1 and (dy)/(dx)=0 , when x=0

Solve: (d^2y)/dx^2=e^x(sinx+cosx) , given that y=1 and (dy)/(dx)=0 , when x=0

Solve the differential equation (d^2y)/(dx^2)=x+sinx subject to the condition that (dy)/(dx)=0 and y=0 when x=0 .

(d^(2)y)/(dx^(2))=(1)/(1+x^(2)) whenx =0,y=0 and (dy)/(dx)=0

(dy)/(dx) + 2y = e ^(-2x) sinx , given that y=0 when x = 0

Find the order and degree of the following differential equations. i) (dy)/(dx)+y=1/((dy)/(dx)) , ii) e^(e^(3)y)/(dx^(3))-x(d^(2)y)/(dx^(2))+y=0 , iii) sin^(-1)(dy)/(dx)=x+y , iv) log_(e)(dy)/(dx)=ax+by v) y(d^(2)y)/(dx^(2))+x((dy)/(dx))^(2)-4y(dy)/(dx)=0

Find the order and degree of the following differential equations. i) (dy)/(dx)+y=1/((dy)/(dx)) , ii) e^(e^(3)y)/(dx^(3))-x(d^(2)y)/(dx^(2))+y=0 , iii) sin^(-1)(dy)/(dx)=x+y , iv) log_(e)(dy)/(dx)=ax+by v) y(d^(2)y)/(dx^(2))+x((dy)/(dx))^(2)-4y(dy)/(dx)=0