Home
Class 11
MATHS
lim(x->0)((1^x+2^x+...........+n^x)/n)^(...

`lim_(x->0)((1^x+2^x+...........+n^x)/n)^(1/x)` is equal to

Promotional Banner

Similar Questions

Explore conceptually related problems

(lim)_(x->0)((1^x+2^x+3^x++n^x)/n)^(1/x)\ is equal to (n\ !)\ ^n b. (n !)^(1//n) c. n ! d. "ln"(n !)

The value of lim_(x rarr0)((1^(x)+2^(x)+3^(x)+.........n^(x))/(n))^((a)/(pi))

lim_(x rarr0)((1^(x)+2^(x)+3^(x)+...+n^(x))/(n))^((1)/(x))

The value of lim_(xto0)((1^(x)+2^(x)+3^(x)+…………+n^(x))/n)^(a//x) is

lim_(xrarr0)((1^(x)+2^(x)+3^(x)+…..+n^(x))/(n))^((a)/(x)) equals

lim_(xto0) ((2^(m)+x)^(1//m)-(2^(n)+x)^(1//n))/(x) is equal to

If lim_(x->1)((x^n-1)/(n(x-1)))^(1/(x-1))=e^p , then p is equal to

lim_(x rarr0)((a_(1)^(x)+a_(2)^(x)......+a_(n)^(x))/(n))^((1)/(x))=

lim_(ntooo) n^(2)(x^(1//n)-x^(1//(n+1))),xgt0, is equal to