Home
Class 11
MATHS
If lim(x->0)(x^n-sinx^x)/(x-sin^n x) is...

If `lim_(x->0)(x^n-sinx^x)/(x-sin^n x)` is non-zero finite, then `n` must be equal to 4 (b) 1 (c) 2 (d) 3

Promotional Banner

Similar Questions

Explore conceptually related problems

If lim_(x to 0) (x^n-sin^n x)/(x-sin^n x) is nonzero and finite , then n in equal to

lim_(xto0)(3-asinx-bcosx-log_e(1+x))/(3tan^2x) is non zero finite find 2b-a

lim_(x->0) (sin(nx)((a-n) nx-tan x))/ x2., when n is a non-zero positive integer, then a is equal to

lim_(x rarr0)(x+sin x-x cos x-tan x)/(x^(n)) exists and is non-zero finite value then the value of n is: (a) 3 (b) 4 (c) 5 (d) 6

lim_(x->0) (sin(nx)((a-n)nx – tanx))/x^2= 0, when n is a non-zero positive integer, then a is equal to

(2) lim_(n rarr0) (n!sin x)/(n)

=lim_(x rarr0)(5^(x)+4-2^(n-1))/(sin x)=

If lim_(x to 0) ("sin" 2X + a "sin" x)/(x^(3)) =b (finite), then (ab)^(2) equals…..

If lim_(x to 0) ({(a-n)nx - tan x} sin nx)/x^(2) = 0 , where n is non-zero real number, then a is equal to