Home
Class 12
MATHS
Let p1,p2,p3 be primes with p2!=p3, suc...

Let `p_1,p_2,p_3` be primes with `p_2!=p_3`, such that `4 +p_1p_2` and `4+p_1p_3` are perfect squares. Find all possible values of `p_1,p_2,p_3`.

Promotional Banner

Similar Questions

Explore conceptually related problems

Let p be prime number such that 3 < p < 50 , then p^2 - 1 is :

If p_(1)^(x_(1))timesp_(2)^(x_(2))timesp_(3)^(x_(3))timesp_(4)^(x_(4))=11340 where p_(1), p_(2), p_(3), p_(4) are primes in ascending order and x_(1), x_(2), x_(3), x_(4) are integers, find the value of p_(1), p_(2), p_(3), p_(4) and x_(1), x_(2), x_(3), x_(4) .

In triangle ABC if p_1, p_2, p_3 are the length of the altitudes from A, B, C then p_1,p_2,p_3

If p(t)=2t^3+3t-4 , find the values of p(1),p(0),p(2),p(-2).

Let p be a prime number such that 3

If p(t) = 3t^3+4t-5 find the values of p(1),p(-1),P(0),p(2),p(-2).

If p(t)=t^(3)-1 , find the values of p(1),p(-1),p(0),p(2),p(-2) .

If p(t)=t^(3)-1 , find the values of p(1),p(-1),p(0),p(2),p(-2) .

If p(t)=t^(3)-1 , find the values of p(1),p(-1),p(0),p(2),p(-2) .

If p(t)=t^(3)-1 , find the values of p(1),p(-1),p(0),p(2),p(-2) .