Home
Class 9
MATHS
lim(x->0)1/(x^2)int0^x(t dt)/(t^4+1) is ...

`lim_(x->0)1/(x^2)int_0^x(t dt)/(t^4+1)` is equal to

Promotional Banner

Similar Questions

Explore conceptually related problems

lim_(x rarr0)(1)/(x^(2))int_(0)^(x)(tdt)/(t^(4)+1) is equal to

The value of (lim)_(x->0)1/(x^3)int_0^x(t ln(1+t))/(t^4+4)dt is a. 0 b. 1/(12) c. 1/(24) d. 1/(64)

lim_(x to 0)(int_(0)^t(x^(2))sinsqrt(t) dt)/(x^(3)) is equl to

lim_(x rarr 0)(int_0^x tsin(10t)dt)/x is equal to

lim(x->0)(1/(x^5)int_0^xe^(-t^2)dt-1/(x^4)+1/(3x^2)) is equal to

lim(x->0)(1/(x^5)int_0^xe^(-t^2)dt-1/(x^4)+1/(3x^2)) is equal to

lim_(xto oo) (int_(0)^(x)tan^(-1)t\ dt)/(sqrt(x^(2)+1)) is equal to

lim_(xto oo) (int_(0)^(x)tan^(-1)t\ dt)/(sqrt(x^(2)+1)) is equal to

The value of lim_(x to 0)(int_(0)^(x^(2))sec^(2)t dt)/(x sin x) is equal to -