Home
Class 12
MATHS
y=tan^(-1)((x)/(sqrt(1+x^(2))))dx...

y=tan^(-1)((x)/(sqrt(1+x^(2))))dx

Promotional Banner

Similar Questions

Explore conceptually related problems

If y=tan^(-1)((x)/(sqrt(1+x^(2))-1)), then (dy)/(dx)=

if y=tan^(-1)((x)/(sqrt(1+x^(2)))) then find (dy)/(dx)

If y = tan^(-1)((x)/(sqrt(1 -x^2))) , then (dy)/(dx) is equal to

If y = tan^(-1)((x)/(sqrt(1 -x^2))) , then (dy)/(dx) is equal to

(iv) If y=tan^(-1)(x/(1+sqrt(1-x^(2))))+sin(2tan^(-1)sqrt((1-x)/(1+x))) , then find (dy)/(dx) for x epsilon(-1,1)

Find (dy)/(dx) , when y="tan"^(-1)(x)/(1+sqrt(1-x^(2)))+sin(2 tan^(-1)sqrt((1-x)/(1+x)))

Differentiate tan^(-1) ((sqrt(1+x^(2))-1)/(x)) w.r.t. tan^(-1) ((x)/(sqrt(1-x^(2)))) .

Differentiate w.r.t x , y = tan^(-1) (x /(sqrt(1+x^(2))-1))

Find (dy)/(dx) when (y-tan^(-1))(x)/(1+sqrt(1-x^(2)))+sin[2tan^(-1)sqrt((1-x)/(1+x))]